Análisis de sentimiento como apoyo a la selección de libros: un estudio aplicado a la plataforma skoob
DOI:
https://doi.org/10.5007/1518-2924.2022.e83588Resumen
Objetivo: Este trabajo tiene como objetivo aplicar la técnica de análisis de sentimiento en las reseñas publicadas en la plataforma Skoob, con el fin de proponer un nuevo parámetro de evaluación que ayude a los usuarios a tomar una decisión sobre si leer o no un libro.
Método: Investigación exploratoria, con enfoque cuantitativo y cualitativo, que utilizó la técnica de detección de polaridad para realizar el análisis de sentimiento, con el fin de automatizar la identificación del grado de polaridad de las opiniones contenidas en las reseñas, las cuales pueden ser positivas, negativas o neutras. Se seleccionaron un total de 45.114 reseñas relacionadas con los 20 libros más leídos entre los usuarios de la plataforma Skoob.
Resultado: Los resultados obtenidos muestran el potencial de aplicar el análisis de sentimiento en las reseñas de libros como una herramienta más para ayudar al usuario de la plataforma Skoob en su toma de decisiones sobre qué libro empezar a leer o qué libros poner en su próxima lista de lecturas.
Conclusiones: Las reseñas de libros son insumos importantes en una red social de lectores, ya que pueden influir en las preferencias de lectura de sus usuarios, además de presentar las características positivas y negativas de un libro en particular. La aplicación de análisis de sentimiento sobre las opiniones contenidas en dichas reseñas puede proporcionar indicadores de forma automatizada y rápida, permitiendo medir el comportamiento de los usuarios en relación a los libros que han leído, además de ser utilizados como una métrica alternativa para evaluación de libros.
Descargas
Citas
ALMEIDA, R. J. A. LeIA - Léxico para Inferência Adaptada. 2018. Disponível em: https://github.com/rafjaa/LeIA. Acesso em: 04 dez. 2020.
BECKER, K.; TUMITAN, D. Introdução à mineração de opiniões: conceitos, aplicações e desafios. In: SIMPÓSIO BRASILEIRO DE BANCO DE DADOS, 28., 2013, Recife. Anais […]. Porto Alegre: Sociedade Brasileira de Computação, 2013. p. 27-52.
BENEVENUTO, F.; RIBEIRO, F.; ARAÚJO, M. Métodos para análise de sentimentos em mídias sociais. In: SIMPÓSIO BRASILEIRO DE SISTEMAS MULTIMÍDIA E WEB. MINICURSOS, 21., 2015, Manaus. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2015. p. 31-59.
CAMBRIA, E.; LIVINGSTONE, A.; HUSSAIN, A. The Hourglass of Emotions. In: ESPOSITO, A.; ESPOSITO, A. M.; VINCIARELLI, A.; HOFFMANN, R.; MÜLLER, V. C. (org.). Cognitive Behavioural Systems. Heidelberg: Springer, 2012. Disponível em: http://dx.doi.org/10.1007/978-3-642-34584-5_11. Acesso em: 30 jun. 2021.
CHIAVETTA, F.; BOSCO, G. L.; PILATO, G. A lexicon-based approach for sentiment classification of Amazon books reviews in Italian language. In: INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND TECHNOLOGIES, 12., 2016, Rome. Proceedings […]. Rome: INSTICC, 2016. p. 159–170.
GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. Cambridge: MIT Press, 2016. Disponível em: http://www.deeplearningbook.org. Acesso em: 25 jun. 2021.
HUTTO, C.; GILBERT, E. Vader: A parsimonious rule-based model for sentiment analysis of social media text. In: PROCEEDINGS OF THE INTERNATIONAL AAAI CONFERENCE ON WEB AND SOCIAL MEDIA, 8., 2014, Ann Arbor. Proceedings […]. Palo Alto: AAAI, 2014. p. 216–225.
HOTHO, A.; NÜRNBERGER, A.; PAAß, G. A brief survey of text mining. LDV Forum, Trier, v. 20, n. 1, p. 19-62, 2005.
LIU, B. Sentiment analysis and subjectivity. Handbook of natural language processing, v. 2, n. 2010, p. 627-666, 2010.
NASCIMENTO, A. G.; ODDONE, N. E. Métricas alternativas para a avaliação da produção científica: a altmetria e seu uso pelos bibliotecários. In: ENCONTRO NACIONAL DE PESQUISA EM CIÊNCIA DA INFORMAÇÃO, 17., 2016, Salvador. Anais [...]. Salvador: ANCIB, 2016. p. 3071-3085.
PANG, B.; LEE, L. Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, Delft, v. 2, n. 1-2, p. 1-94, 2008.
PÅLSSON, A.; SZERSZEN, D. Sentiment Classification in Social Media: An Analysis of Methods and the Impact of Emoticon Removal. 2016. Disponível em: https://www.diva-portal.org/smash/get/diva2:930520/FULLTEXT01.pdf. Acesso em: 16 jun. 2021.
PAK, A.; PAROUBEK, P. Twitter as a corpus for sentiment analysis and opinion mining. In: INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 7., 2010, Valletta. Proceedings […]. Paris: ELRA, 2010. p. 1320-1326.
PIRYANI, R.; GUPTA, V.; SINGH, V. K.; PINTO, D. Book impact assessment: A quantitative and text-based exploratory analysis. Journal of Intelligent & Fuzzy Systems, Amsterdam, v.34, n. 6, p. 1–10, 2018.
RAJU, B. N.; NAIKODI, C.; SURESH, L. Sentiment analysis of product attribute using social media. International Journal of Engineering Research, Bengaluru, v. 5, n. 4, p. 808-813, 2016.
SKOOB. Plataforma de Rede Social para Leitores. Disponível em: https://www.skoob.com.br. Acesso em: 08 dez. 2020.
WANG, K.; LIU, X.; HAN, Y. Exploring Goodreads reviews for book impact assessment. Journal of Informetrics, Amsterdam, v. 13, n. 3, p. 874–886, 2019.
ZHOU, Q.; ZHANG, C.; ZHAO, S. X.; CHEN, B. Measuring book impact based on the multi-granularity online review mining. Scientometrics, Amsterdam, v. 107, n. 3, p. 1–21, 2016.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Ronnie Shida Marinho, Clayton Martins Pereira, José Eduardo Santarem Segundo

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El autor debe garantizar:
que existe un consenso total de todos los coautores para aprobar la versión final del documento y su presentación para su publicación.
que su trabajo es original, y si se han utilizado el trabajo y / o las palabras de otras personas, estos se han reconocido correctamente.
El plagio en todas sus formas constituye un comportamiento editorial poco ético y es inaceptable. Encontros Bibli se reserva el derecho de utilizar software o cualquier otro método para detectar plagio.
Todas las presentaciones recibidas para su evaluación en la revista Encontros Bibli: revista electrónica de biblioteconomía y ciencias de la información pasan por la identificación del plagio y el auto-plagio. El plagio identificado en los manuscritos durante el proceso de evaluación dará como resultado la presentación de la presentación. En el caso de identificación de plagio en un manuscrito publicado en la revista, el Editor en Jefe llevará a cabo una investigación preliminar y, si es necesario, la retractará.
Esta revista, siguiendo las recomendaciones del movimiento de Acceso Abierto, proporciona su contenido en Acceso Abierto Completo. Por lo tanto, los autores conservan todos sus derechos, permitiendo a Encontros Bibli publicar sus artículos y ponerlos a disposición de toda la comunidad.
Los contenidos de Encontros Bibli están licenciados bajo Licencia Creative Commons 4.0.
Cualquier usuario tiene derecho a:
- Compartir: copiar, descargar, imprimir o redistribuir material en cualquier medio o formato
- Adaptar: mezclar, transformar y crear a partir del material para cualquier propósito, incluso comercial.
De acuerdo con los siguientes términos:
- Atribución: debe otorgar el crédito apropiado, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Debe hacerlo bajo cualquier circunstancia razonable, pero de ninguna manera sugeriría que el licenciante lo respalde a usted o su uso.
- Sin restricciones adicionales: no puede aplicar términos legales o medidas tecnológicas que restrinjan legalmente a otros de hacer cualquier cosa que permita la licencia.