Application of binary logistic regression in education assisted by artificial intelligence
Advances and Challenges of AI in the University Context: An Empirical Study
DOI:
https://doi.org/10.5007/1518-2924.2025.e101000Keywords:
Artificial Intelligence, Digital Skills, Higher Education, Personalised LearningAbstract
Objective: To predict whether university students will make efficient use of Artificial Intelligence (AI) in the coming years.
Method: A binary logistic regression is used, a statistical analysis that allows predicting the outcome of a binary dependent variable, in this case, the efficient use of AI, based on several independent variables, such as digital skills management or the use of Chat GPT.
Results: Social Sciences students have the lowest probability of using Chat GPT efficiently, and younger students are the ones who use AI the least effectively. Those students who use this tool professionally also show less efficient use, possibly because their professional focus limits the exploration of other uses. Good handling of the tool explains the efficient use of Chat GPT. Variables indicating inefficient use include the lack of digital skills or age.
Conclusions: It is essential to promote responsible and conscious use of AI in the educational field, encouraging innovative teaching methods that cater to the needs of students less familiar with AI, so that all students, regardless of their age, gender, or field of study, can benefit from what AI has to offer.
Downloads
References
Alajmi, Q., Al-Sharafi, MA y Abuali, A. (2020). Pasarelas de aprendizaje inteligentes para las IES de Omán hacia la tecnología educativa: beneficios, desafíos y soluciones. Revista internacional de tecnología de la información y estudios del lenguaje, 4 (1), 12-17.
Albarran, E. (2023). Hacia una educación personalizada y adaptativa. La disrupción de la inteligencia artificial. Centro Internacional de educación continua- Universidad Pedagógica experimental Libertador. https://0310o42sw-y-https-elibro-net.itmsp.museknowledge.com/es/ereader/rafaellandivar/231339
Barker, K. (1986). Dilemmas at distance. Assessment & Evaluation in Higher Education, 11(3), 219230. doi:10.1080/0260293860110306
Cataldi, Z. y Dominighini, C. (2019). Desafíos en la Educación Universitaria para el 2030. Más allá de la generación Z: Pensando en la generación Alfa. Revista de Informática Educativa y Medios Audiovisuales, 17(25), 1-6.
Comisión Europea, Dirección General de Educación, Juventud, Deporte y Cultura (2022). Informe final del grupo de expertos de la Comisión sobre inteligencia artificial y datos en educación y formación: resumen ejecutivo , Oficina de Publicaciones de la Unión Europea, https://data .europa.eu/doi/10.2766/65087
Cristianini, N. (2016). Inteligencia reinventada. Nuevo científico, 232 (3097), 37–41. https://doi.org/10.1016/S0262-4079(16)31992-3
DigCompEdu. https://joint-research-centre.ec.europa.eu/digcompedu_en
González-González, C. S. (2023). El impacto de la inteligencia artificial en la educación: transformación de la forma de enseñar y de aprender. Repositorio institucional de la Universidad de La Laguna. http://riull.ull.es/xmlui/handle/915/32719
Ministerio de Trabajo y Economía Social (2024). Informe jóvenes y mercado de trabajo nº 41, 2024 t1
Moscardini, A. O., Strachan, R., & Vlasova, T. (2022). The role of universities in modern society. Studies in Higher Education, 47(4), 812-830. https://doi.org/10.1080/03075079.2020.1807493
Oyarvide Estupiñán, N. S., Tenorio Canchingre, E., Oyarvide Ibarra, R. T., Oyarvide Ramírez, H. P., & Racines Alban, T. (2024). Factores influyentes para el uso de herramientas digitales en estudiantes universitarios. Revista Científica De Salud Y Desarrollo Humano, 5(2), 346–366. https://doi.org/10.61368/r.s.d.h.v5i2.141
Pedreño Muñoz, A. et al. (2024). La inteligencia artificial en las universidades: retos y oportunidades. Informe anual sobre IA y educación superior. Grupo 1million Boot. https://andrespedreno.com/Informe-IA-Universidades.pdf
Popenici, S.A.D. & Kerr, S. (2017). Explorando el impacto de la inteligencia artificial en la enseñanza y el aprendizaje en la educación superior. Investigación y práctica en aprendizaje mejorado con tecnología, 12 (22), 1–13. https://doi.org/10.1186/s41039-017-0062-8
Ruiz-Miranda, E. (2023). La revolución de la inteligencia artificial en la educación: una revisión de ChatGPT: https://chat.openai.com/. Revista De Estudios E Investigación En Psicología Y Educación , 10 (1), 156–160. https://doi.org/10.17979/reipe.2023.10.1.9594
Turing, A.M. (1950). Maquinaria informática e inteligencia. Mente, 59, 443–460.
UNESCO. (2023). La inteligencia artificial generativa en la educación: ¿Cuáles son las oportunidades y los desafíos? https://www.unesco.org/es/articles/la-inteligencia-artificial-generativa-en-la-educacion-cualesson-las-oportunidades-y-los-desafios
UNESCO (2024). Guía para el uso de IA generativa en educación e investigación.
World Economic Forum (septiembre 2023).Jobs of Tomorrow: Large Language Models and Jobs.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Angel Bartolome Muñoz de Luna, Sonia Martin Gomez

This work is licensed under a Creative Commons Attribution 4.0 International License.
The author must guarantee that:
- there is full consensus among all the coauthors in approving the final version of the document and its submission for publication.
- the work is original, and when the work and/or words from other people were used, they were properly acknowledged.
Plagiarism in all of its forms constitutes an unethical publication behavior and is unacceptable. Encontros Bibli has the right to use software or any other method of plagiarism detection.
All manuscripts submitted to Encontros Bibli go through plagiarism and self-plagiarism identification. Plagiarism identified during the evaluation process will result in the filing of the submission. In case plagiarism is identified in a manuscript published in the journal, the Editor-in-Chief will conduct a preliminary investigation and, if necessary, will make a retraction.
This journal, following the recommendations of the Open Source movement, provides full open access to its content. By doing this, the authors keep all of their rights allowing Encontros Bibli to publish and make its articles available to the whole community.
Encontros Bibli content is licensed under a Creative Commons Attribution 4.0 International License.
Any user has the right to:
- Share - copy, download, print or redistribute the material in any medium or format.
- Adapt - remix, transform and build upon the material for any purpose, even commercially.
According to the following terms:
- Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything that the license permits.