Application of binary logistic regression in education assisted by artificial intelligence

Advances and Challenges of AI in the University Context: An Empirical Study

Authors

DOI:

https://doi.org/10.5007/1518-2924.2025.e101000

Keywords:

Artificial Intelligence, Digital Skills, Higher Education, Personalised Learning

Abstract

Objective: To predict whether university students will make efficient use of Artificial Intelligence (AI) in the coming years.

Method: A binary logistic regression is used, a statistical analysis that allows predicting the outcome of a binary dependent variable, in this case, the efficient use of AI, based on several independent variables, such as digital skills management or the use of Chat GPT.

Results: Social Sciences students have the lowest probability of using Chat GPT efficiently, and younger students are the ones who use AI the least effectively. Those students who use this tool professionally also show less efficient use, possibly because their professional focus limits the exploration of other uses. Good handling of the tool explains the efficient use of Chat GPT. Variables indicating inefficient use include the lack of digital skills or age.

Conclusions: It is essential to promote responsible and conscious use of AI in the educational field, encouraging innovative teaching methods that cater to the needs of students less familiar with AI, so that all students, regardless of their age, gender, or field of study, can benefit from what AI has to offer.

Downloads

Author Biographies

Angel Bartolome Muñoz de Luna, Universidad San Pablo CEU

Professor Dr. Ángel Bartolomé, from the San Pablo CEU University, is a doctor in communication, director of the CEU Publicis Master in Advertising Creativity and Innovation. Vice Rector of CEU Students. Master in EOI design management. Certified Teacher in Soft skills from the University of North Carolina (USA). Researcher in 12 competitive projects. Technology project manager and founder of Welvi Eperience (airfit). Art director at different advertising agencies. Doctoral thesis director.

 

For more information about his career, see: https://dialnet.unirioja.es/servlet/autor?codigo=2646217 https://scholar.google.es/citations?user=YQ2JIDQAAAAJ&hl=es

 

https://orcid.org/0000-0001-7056-8855

Sonia Martin Gomez, University San Pablo CEU

Dr. Sonia Martín Gómez has been a professor at the San Pablo CEU University since 1994. Responsible for the undergraduate Values ​​and Leadership Degree and the postgraduate Transformative Competencies Program. Project advisor at the RED Research Group, University of Antioquia, staying and directing thesis at said university. Award for application of new technologies in teaching and Award for innovation in Company Operational Management at USP-CEU. Author of application manuals.

For more information about her career, see: https://www.researchgate.net/profile/Sonia-Martin-Gomez https://dialnet.unirioja.es/metricas/investigadores/555443

https://orcid.org/0000-0002-9377-1941

References

Alajmi, Q., Al-Sharafi, MA y Abuali, A. (2020). Pasarelas de aprendizaje inteligentes para las IES de Omán hacia la tecnología educativa: beneficios, desafíos y soluciones. Revista internacional de tecnología de la información y estudios del lenguaje, 4 (1), 12-17.

Albarran, E. (2023). Hacia una educación personalizada y adaptativa. La disrupción de la inteligencia artificial. Centro Internacional de educación continua- Universidad Pedagógica experimental Libertador. https://0310o42sw-y-https-elibro-net.itmsp.museknowledge.com/es/ereader/rafaellandivar/231339

Barker, K. (1986). Dilemmas at distance. Assessment & Evaluation in Higher Education, 11(3), 219230. doi:10.1080/0260293860110306

Cataldi, Z. y Dominighini, C. (2019). Desafíos en la Educación Universitaria para el 2030. Más allá de la generación Z: Pensando en la generación Alfa. Revista de Informática Educativa y Medios Audiovisuales, 17(25), 1-6.

Comisión Europea, Dirección General de Educación, Juventud, Deporte y Cultura (2022). Informe final del grupo de expertos de la Comisión sobre inteligencia artificial y datos en educación y formación: resumen ejecutivo , Oficina de Publicaciones de la Unión Europea, https://data .europa.eu/doi/10.2766/65087

Cristianini, N. (2016). Inteligencia reinventada. Nuevo científico, 232 (3097), 37–41. https://doi.org/10.1016/S0262-4079(16)31992-3

DigCompEdu. https://joint-research-centre.ec.europa.eu/digcompedu_en

González-González, C. S. (2023). El impacto de la inteligencia artificial en la educación: transformación de la forma de enseñar y de aprender. Repositorio institucional de la Universidad de La Laguna. http://riull.ull.es/xmlui/handle/915/32719

Ministerio de Trabajo y Economía Social (2024). Informe jóvenes y mercado de trabajo nº 41, 2024 t1

Moscardini, A. O., Strachan, R., & Vlasova, T. (2022). The role of universities in modern society. Studies in Higher Education, 47(4), 812-830. https://doi.org/10.1080/03075079.2020.1807493

Oyarvide Estupiñán, N. S., Tenorio Canchingre, E., Oyarvide Ibarra, R. T., Oyarvide Ramírez, H. P., & Racines Alban, T. (2024). Factores influyentes para el uso de herramientas digitales en estudiantes universitarios. Revista Científica De Salud Y Desarrollo Humano, 5(2), 346–366. https://doi.org/10.61368/r.s.d.h.v5i2.141

Pedreño Muñoz, A. et al. (2024). La inteligencia artificial en las universidades: retos y oportunidades. Informe anual sobre IA y educación superior. Grupo 1million Boot. https://andrespedreno.com/Informe-IA-Universidades.pdf

Popenici, S.A.D. & Kerr, S. (2017). Explorando el impacto de la inteligencia artificial en la enseñanza y el aprendizaje en la educación superior. Investigación y práctica en aprendizaje mejorado con tecnología, 12 (22), 1–13. https://doi.org/10.1186/s41039-017-0062-8

Ruiz-Miranda, E. (2023). La revolución de la inteligencia artificial en la educación: una revisión de ChatGPT: https://chat.openai.com/. Revista De Estudios E Investigación En Psicología Y Educación , 10 (1), 156–160. https://doi.org/10.17979/reipe.2023.10.1.9594

Turing, A.M. (1950). Maquinaria informática e inteligencia. Mente, 59, 443–460.

UNESCO. (2023). La inteligencia artificial generativa en la educación: ¿Cuáles son las oportunidades y los desafíos? https://www.unesco.org/es/articles/la-inteligencia-artificial-generativa-en-la-educacion-cualesson-las-oportunidades-y-los-desafios

UNESCO (2024). Guía para el uso de IA generativa en educación e investigación.

World Economic Forum (septiembre 2023).Jobs of Tomorrow: Large Language Models and Jobs.

Published

2025-03-17

How to Cite

LUNA, Angel Bartolome Muñoz de; MARTIN GOMEZ, Sonia. Application of binary logistic regression in education assisted by artificial intelligence: Advances and Challenges of AI in the University Context: An Empirical Study. Encontros Bibli: revista eletrônica de biblioteconomia e ciência da informação, [S. l.], v. 30, p. 1–22, 2025. DOI: 10.5007/1518-2924.2025.e101000. Disponível em: https://periodicos.ufsc.br/index.php/eb/article/view/101000. Acesso em: 27 mar. 2025.

Issue

Section

Dossier: News scenarios of the Digital Society and the challenges of Generative Artificial Intelligence