Algorithmic Semiosis and Racial Bias: a Study of Images Created by Generative AI
un Estudio de Imágenes Creadas por IA Generativa
DOI:
https://doi.org/10.5007/1518-2924.2025.e103495Keywords:
Generative Artificial Intelligence, Algorithmic Semiosis, Algorithmic Racism, AI-Generated ImagesAbstract
Objective: To investigate the trirelational relationship among object, sign, and interpretant in the functioning of generative Artificial Intelligence (AI) tools for image production, with an emphasis on racial bias. Method: Exploratory and quali-quantitative research, which employed a semiotic and critical content approach. Data collection was carried out in four stages: 1) selection of 10 tools; 2) formulation of eight textual prompts in English; 3) generation and storage of 155 images; 4) categorization, analysis of these images, and selection of 47 of them to demonstrate the observed patterns and markers. Results: Predominance of a specific ethnic and social group in the generated images, with an absence of diversity markers. When using the generic prompts: 'a man' and 'a woman,' 90.9% of the images of men and 92% of the images of women portrayed white, upper-middle-class individuals. When using more specific prompts: 'a black man' and 'a black woman,' the images often replicated stereotypes and characteristics that reinforce racial and class prejudices. Conclusions: The generative AI tools analyzed are part of a new cycle of visual reality production that reflects, reproduces, and amplifies existing raciality devices. The technical images generated by AI reflect power relations, as well as markers of whiteness and racism, highlighting how assistive technology intertwines with social and cultural representations in its semiotic action. The study helped denaturalize algorithmic semioses by demonstrating how the functioning of generative AIs reveals ethical and social implications that are guided by perceptions of race and otherness, shaped by hierarchies that contribute to the creation of control images.
Downloads
References
BAEZA-YATES, R.; RIBEIRO-NETO, B. Recuperação de Informação: Conceitos e Tecnologia das Máquinas de Busca. Bookman Editora, 2011.
BENGIO, Y.; LECUN, Y.; HINTON, G. Deep learning for AI. Communications of the ACM, v. 64, n. 7, p. 58-65, 2021.
BENTO, C. O pacto da branquitude. São Paulo: Companhia das Letras, 2022. 148 p.
CARNEIRO, S. Dispositivo de racialidade: a construção do outro como não-ser como fundamento do ser. São Paulo: Editora Jandaíra. 2023.431 p.
COLLINS, P. H. Pensamento feminista negro: conhecimento, consciência e a política do empoderamento (D. N. Barbosa, Trad.). São Paulo: Boitempo. 2019.
CORREDERA, J. R. C. Inteligencia artificial generativa. In: Anales de la Real academia de Doctores. 2023. p. 475-489.
FLUSSER, V. Filosofia da caixa preta: ensaios para uma futura filosofia da fotografia.1985. 48p.
GILLESPIE, T. A relevância dos algoritmos. Parágrafo, [S.l.], v. 6, n. 1, p. 95-121, jun. 2018.
GOODFELLOW, I. et al. Generative adversarial nets. Advances in neural information processing systems, v. 27, 2014.
HAYKIN, S. Redes neurais: princípios e prática. Bookman Editora, 2001.
HINTON, G. E. et al. How neural networks learn from experience. 1992.
MANINI, M. P. Análise documentária de imagens. Informação & Sociedade: Estudos, v. 11 n.1 2001, n. 1, 2001.
MCCULLOCH, W.S.; PITTS, W. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, v. 5, p. 115-133, 1943.
MOURA, M. A. Semiótica e mediações digitais: o processo de criação e recepção de hipermídia. São Paulo: PUC/SP, 2002.
MUNANGA, K. Uma abordagem conceitual das noções de raça, racismo, identidade e etnia. 2004.
PEIRCE, C. S. Collected Papers of Charles Sanders Peirce. Versão eletrônica.
PINTO, J. 1,2,3 da semiótica. Belo Horizonte: Editora UFMG, 1995.
RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning representations by backpropagating errors. Nature, v. 323, n. 6088, p. 533-536, 1986.
SHATFORD, S. Some issues in the indexing of images. Journal of the American Society for Information Science. [Washington, USA], v. 45, n. 8, p. 583-588, Set. 1994.
SMIT, J. W. A representação da imagem. Informare – Cadernos da Pós Graduação, Ci. Inf., Rio de Janeiro, v.2, n.2, p. 28-36, jul./dez. 1996.
SILVA, T. Racismo algorítmo: inteligência artificial e discriminação nas redes digitais. São Paulo: Edições SESC, 2022.
SILVA, T. Racismo Algorítmico em Plataformas Digitais: microagressões e discriminação em código. 2019.
VASWANI, A. et. al. Attention is all you need. Advances in neural information processing systems, v. 30, 2017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Juliana de Assis, Maria Aparecida Moura

This work is licensed under a Creative Commons Attribution 4.0 International License.
The author must guarantee that:
- there is full consensus among all the coauthors in approving the final version of the document and its submission for publication.
- the work is original, and when the work and/or words from other people were used, they were properly acknowledged.
Plagiarism in all of its forms constitutes an unethical publication behavior and is unacceptable. Encontros Bibli has the right to use software or any other method of plagiarism detection.
All manuscripts submitted to Encontros Bibli go through plagiarism and self-plagiarism identification. Plagiarism identified during the evaluation process will result in the filing of the submission. In case plagiarism is identified in a manuscript published in the journal, the Editor-in-Chief will conduct a preliminary investigation and, if necessary, will make a retraction.
This journal, following the recommendations of the Open Source movement, provides full open access to its content. By doing this, the authors keep all of their rights allowing Encontros Bibli to publish and make its articles available to the whole community.
Encontros Bibli content is licensed under a Creative Commons Attribution 4.0 International License.
Any user has the right to:
- Share - copy, download, print or redistribute the material in any medium or format.
- Adapt - remix, transform and build upon the material for any purpose, even commercially.
According to the following terms:
- Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything that the license permits.