Algorithmic Semiosis and Racial Bias: a Study of Images Created by Generative AI

un Estudio de Imágenes Creadas por IA Generativa

Authors

DOI:

https://doi.org/10.5007/1518-2924.2025.e103495

Keywords:

Generative Artificial Intelligence, Algorithmic Semiosis, Algorithmic Racism, AI-Generated Images

Abstract

Objective: To investigate the trirelational relationship among object, sign, and interpretant in the functioning of generative Artificial Intelligence (AI) tools for image production, with an emphasis on racial bias. Method: Exploratory and quali-quantitative research, which employed a semiotic and critical content approach. Data collection was carried out in four stages: 1) selection of 10 tools; 2) formulation of eight textual prompts in English; 3) generation and storage of 155 images; 4) categorization, analysis of these images, and selection of 47 of them to demonstrate the observed patterns and markers. Results: Predominance of a specific ethnic and social group in the generated images, with an absence of diversity markers. When using the generic prompts: 'a man' and 'a woman,' 90.9% of the images of men and 92% of the images of women portrayed white, upper-middle-class individuals. When using more specific prompts: 'a black man' and 'a black woman,' the images often replicated stereotypes and characteristics that reinforce racial and class prejudices. Conclusions: The generative AI tools analyzed are part of a new cycle of visual reality production that reflects, reproduces, and amplifies existing raciality devices. The technical images generated by AI reflect power relations, as well as markers of whiteness and racism, highlighting how assistive technology intertwines with social and cultural representations in its semiotic action. The study helped denaturalize algorithmic semioses by demonstrating how the functioning of generative AIs reveals ethical and social implications that are guided by perceptions of race and otherness, shaped by hierarchies that contribute to the creation of control images.

Downloads

Author Biographies

Juliana de Assis, Federal University of Rio de Janeiro

Adjunct Professor at the Library Science Department at the Federal University of Rio de Janeiro.

Maria Aparecida Moura, Federal University of Minas Gerais

Full Professor at the Department of Information Organization and Processing at the Federal University of Minas Gerais.

References

BAEZA-YATES, R.; RIBEIRO-NETO, B. Recuperação de Informação: Conceitos e Tecnologia das Máquinas de Busca. Bookman Editora, 2011.

BENGIO, Y.; LECUN, Y.; HINTON, G. Deep learning for AI. Communications of the ACM, v. 64, n. 7, p. 58-65, 2021.

BENTO, C. O pacto da branquitude. São Paulo: Companhia das Letras, 2022. 148 p.

CARNEIRO, S. Dispositivo de racialidade: a construção do outro como não-ser como fundamento do ser. São Paulo: Editora Jandaíra. 2023.431 p.

COLLINS, P. H. Pensamento feminista negro: conhecimento, consciência e a política do empoderamento (D. N. Barbosa, Trad.). São Paulo: Boitempo. 2019.

CORREDERA, J. R. C. Inteligencia artificial generativa. In: Anales de la Real academia de Doctores. 2023. p. 475-489.

FLUSSER, V. Filosofia da caixa preta: ensaios para uma futura filosofia da fotografia.1985. 48p.

GILLESPIE, T. A relevância dos algoritmos. Parágrafo, [S.l.], v. 6, n. 1, p. 95-121, jun. 2018.

GOODFELLOW, I. et al. Generative adversarial nets. Advances in neural information processing systems, v. 27, 2014.

HAYKIN, S. Redes neurais: princípios e prática. Bookman Editora, 2001.

HINTON, G. E. et al. How neural networks learn from experience. 1992.

MANINI, M. P. Análise documentária de imagens. Informação & Sociedade: Estudos, v. 11 n.1 2001, n. 1, 2001.

MCCULLOCH, W.S.; PITTS, W. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, v. 5, p. 115-133, 1943.

MOURA, M. A. Semiótica e mediações digitais: o processo de criação e recepção de hipermídia. São Paulo: PUC/SP, 2002.

MUNANGA, K. Uma abordagem conceitual das noções de raça, racismo, identidade e etnia. 2004.

PEIRCE, C. S. Collected Papers of Charles Sanders Peirce. Versão eletrônica.

PINTO, J. 1,2,3 da semiótica. Belo Horizonte: Editora UFMG, 1995.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning representations by backpropagating errors. Nature, v. 323, n. 6088, p. 533-536, 1986.

SHATFORD, S. Some issues in the indexing of images. Journal of the American Society for Information Science. [Washington, USA], v. 45, n. 8, p. 583-588, Set. 1994.

SMIT, J. W. A representação da imagem. Informare – Cadernos da Pós Graduação, Ci. Inf., Rio de Janeiro, v.2, n.2, p. 28-36, jul./dez. 1996.

SILVA, T. Racismo algorítmo: inteligência artificial e discriminação nas redes digitais. São Paulo: Edições SESC, 2022.

SILVA, T. Racismo Algorítmico em Plataformas Digitais: microagressões e discriminação em código. 2019.

VASWANI, A. et. al. Attention is all you need. Advances in neural information processing systems, v. 30, 2017.

Published

2025-03-14

How to Cite

ASSIS, Juliana de; MOURA, Maria Aparecida. Algorithmic Semiosis and Racial Bias: a Study of Images Created by Generative AI: un Estudio de Imágenes Creadas por IA Generativa. Encontros Bibli: revista eletrônica de biblioteconomia e ciência da informação, [S. l.], v. 30, p. 1–24, 2025. DOI: 10.5007/1518-2924.2025.e103495. Disponível em: https://periodicos.ufsc.br/index.php/eb/article/view/103495. Acesso em: 26 mar. 2025.

Issue

Section

Dossier: News scenarios of the Digital Society and the challenges of Generative Artificial Intelligence