Ethnomodeling inspiring themes for modeling: the case of the four-sided roof rafter

Authors

DOI:

https://doi.org/10.5007/1981-1322.2025.e103881

Keywords:

Ethnomodeling, Mathematical Modeling, Rafter, Material-waste

Abstract

Teaching mathematics through emerging everyday themes has proven to be promising, as highlighted by research in Mathematical Modeling. Ethnomodeling uses Modeling to connect academic and cultural knowledge, thereby inspiring a variety of thematic possibilities. This study is part of a broader doctoral research project and aims to communicate how Ethnomodeling inspired 9th-grade students in the final years of middle school to raise problem-based questions and solve them through Mathematical Modeling. We found that the theme of constructing hip roofs sparked students' curiosity, particularly regarding material waste management in the discussed context, leading them to reflect on the importance of such considerations for decision-making.

Author Biographies

Gilmar, Universidade Estadual da Paraíba

Holds a degree in Science with a specialization in Mathematics from the Teacher Training College of Belo Jardim - FABEJA (2006); a postgraduate Lato Sensu specialization in Mathematics Teaching from the University Foundation of Jaboatão dos Guararapes - FUNIJ (2008); and a professional Master’s degree in Science Teaching and Mathematics Education from the State University of Paraíba - UEPB (2019). Currently pursuing a Ph.D. in Teaching at the State University of Paraíba (UEPB). Currently, he is a full-time teacher in the municipal education system in Santa Cruz do Capibaribe-PE and Brejo da Madre de Deus-PE. He also has experience in private education. He is a member of the Science Teaching Research Group affiliated with the State University of Paraíba (UEPB).

Maria , Universidade Federal da Paraíba

An educator with a Master’s degree (2003) and a Ph.D. (2013) in Education from UFPB. She is an Associate Professor in the Department of Educational Methodology - CE/UFPB and a collaborating professor in the Graduate Program in Science Teaching and Mathematics Education - PPGECEM - UEPB. She served as Coordinator of the Pedagogy Course - Campus I - UFPB from 2021 to 2023 and is currently in her second term, from 2023 to 2025. Her doctoral research focused on the semiotic representations of multiplication in the early years as a tool for pedagogical mediation. She studies/researches Mathematics teaching and learning processes, especially in the early years of Elementary Education. She supervises work in areas such as teacher training, mathematics teaching and learning, pedagogical mediation, semiotic representations, active teaching methodologies, and algebraic thinking. She is a member of the Literacy and Mathematics Education Study Group - NEALIM/UFPB, a member of the Interdisciplinary Studies and Practices Laboratory - LEPPI, and leads GPEMAIS - the Study and Research Group on Mathematics Education in the Early Years, which includes university researchers and basic education teachers.

References

Almeida, L. W., Silva, K. P & Vertuan, R. E. (2020). Modelagem Matemática na Educação Básica. São Paulo: Contexto.

Almeida, L. M. W., Silva, K. A. P. & Veronez, M. R. D. (2021). Elementos Semióticos em atividades de Modelagem Matemática. São Paulo: Livraria da Física.

Bassanezi, R. C. (2015). Modelagem Matemática: teoria e prática. São Paulo: Contexto.

Biembengut, M. S. & Hein. N. (2018). Modelagem Matemática no Ensino. São Paulo: Contexto.

Burak, D. (1992). Modelagem Matemática: ações interações no processo de ensino e aprendizagem. Tese de Doutorado em Educação. Campinas: Universidade Estadual de Campinas, Faculdade de Educação. 1992. Retirado em 9 de maio, 2024, de: https://www.psiem.fe.unicamp.br/pf-psiem/burak_dionisio_d.pdf

D’Ambrósio, U. (2012). Educação Matemática: da teoria a prática. Campinas, SP: Papirus.

D’Ambrósio, U. (2018). Etnomatemática: Elo entre as tradições e a modernidade. Belo Horizonte: Editora Autêntica.

D’Amore, B., Piniilla, M. I. F. & Iori, M. (2015). Primeiros elementos de semiótica: sua presença e sua importância no processo de ensino-aprendizagem da matemática. M. C. Bonomi (Trad.). São Paulo: Editora Livraria da Física.

Duval, R. (2009). Semiósis e pensamento humano. São Paulo: Livraria editora da física.

Lanksher, C. & Knobel, M. (2018). Pesquisa Pedagógica: do projeto à implementação. M. F. Lopes (trad.). Porto Alegre: Artmed.

Lima, G. B. & FOSSA, J. A. (2023). Um delineamento pedagógico para a etnomodelagem. Jornal of mathematics and culture, v. 17 (7). 189-210. Retirado em 9 de maio, 2024, de: https://journalofmathematicsandculture.wordpress.com/wpcontent/uploads/2023/11/article-9-177lima-fossa.pdf

Meyer, J. F. C. A., Caldeira, A. D. & Malheiros, A. P. S. (2018). Modelagem em Educação Matemática. Belo Horizonte: Editora Autêntica.

Moraes, R. & Galiazzi, M. do C. (2016). Análise Textual Discursiva. Ijuí: Ed. Inijuí.

Rosa, M. & Orey, D. C. (2017). Etnomodelagem: a arte de traduzir práticas matemáticas locais. São Paulo: editora livraria da física.

Santaella, L. (2004). O que é Semiótica. São Paulo: Brasiliense.

Santaella, L. (2018). Semiótica Aplicada. São Paulo: Cengage Learning.

Published

2025-12-16

Issue

Section

Artigos