Aspects of theories with semiotic approaches and active methodologies in a teaching situation

Authors

DOI:

https://doi.org/10.5007/1981-1322.2025.e105087

Keywords:

Circunstantial Indications, Semiotic Means, Theory of Objectification

Abstract

The purpose of this article is to verify the aspects of the Theory of Objectification proposed by Luis Radford with a focus on a semiotic-cultural approach (whose principles are the production of knowledge and human collaboration) and on the framework of Message and Signs by semiologist Luis Jorge Prieto based on structuralist semiotics with emphasis on communication between receiver and sender. In addition to these references, active methodologies were used - role play, flipped classroom and storelling in a teaching situation of the content Prime Numbers during 3 (three) classes, with 6th grade students from a public school located in the north of Paraná. During the teaching situation, the mobilization of numerous semiotic means - gestures, vocal intonation, paper toys, comic books -, among others, allowed us to demonstrate that the processes of objectification and subjectivation that are fundamental to the Theory of Objectification occurred concomitantly with the semic acts and fundamental circumstantial indications in the framework of Messages and Signs.

Author Biography

Renata Aparecida de Faria, Londrina State University

Professora de Matemática Rede Estadual de Ensino do PR,Ensino Médio e Fundamental II. 

Mestre em Ensino de Ciência e Educação Matemática. UEL. 

References

Arzarello, F.; Paola, D.; Robutti, O. et al.(2009) Gestures as semiotic resources in the mathematics classroom, Palgrave Studies in alternative education, v.70, p. 97-109, 2009. https://doi.org/10.1007/s10649-008-9163-z

Bergsten, C. (2019). Mathematical Approaches. In: Lerman, S. (eds) Encyclopedia of Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-319-77487-9_95-8

Cunha, M. B. da,Omachi, N. A., Ritter, O. M. S., Nascimento, J. E. do, Marques, G. de Q., & Lima, F. O. (2022). Metodologias ativas: em busca de uma caracterização e definição. In SciELO Preprints https://doi.org/10.1590/SciELOPreprints.3885

Drijvers, P., GodinoJ.D., Font V. & Trouche L.(2013) One episode, two lenses. A reflective analysis of student learning with computer algebra from instrumental and onto-semiotic perspectives Educ Stud Math (2013) 82:23–49

Foucault, M. (1971) A ordem do discurso. São Paulo: Edições Loyola.

Godoy, M. T. (2016) Indicações Circunstanciais como signos potencializadores da aprendizagem significativa de conceitos na experimentação animal. Tese (Doutorado em Ensino de Ciências e Educação Matemática) – Universidade Estadual de Londrina, Paraná, Brasil.

Laburú, C. E.; Barros, M. A.; Silva, O. H. M. (2011) Multimodos e múltiplas representações, aprendizagem significativa e subjetividade: três referenciais conciliáveis da educação científica. Ciência & Educação, v. 17, n. 2, p. 469-487, 2011.

Laburú, C.E., Silva, O.H.M & Filho, P.S.C (2021). Semiótica aplicada à educação científica: signos de tipo indicações circunstanciais emitidos pelo professor em atividade discursiva. São Paulo, SP: Editora da Física.

Moran. J.Bacich.L.(2018) Metodologias Ativas para uma Educação Inovadora: Uma Abordagem Teórico-Prática. São Paulo :Editora Penso.

Nöth, W. Semiótica e semiologia: os conceitos e as tradições. Com. Ciência - Revista Eletrônica de Jornalismo Científico, n. 74,https://comciencia.br/dossies-73-184/web/handler82f6.html?section=8&edicao=11&id=82

Otte, M. F.; Santana, G. F. S.; Paula, L.; Barros, L. L. G. X.(2019) Reasons for asemiotic approach to mathematics education. Revista Prática Docente, v. 4, n. 1, p. 24-41 . http://periodicos.cfs.ifmt.edu.br/periodicos/index.php/rpd/article/view/350.

Prediger, S., Arzarello, F., Bosch, M. et al (2008) Comparing, combining, coordinating-networking strategies for connecting theoretical approaches Editorial for ZDM-issue 39 (2008) 2. ZDM Mathematics Education 40, 163–164. https://doi.org/10.1007/s11858-008-0093-0

Presmeg, N.; Radford, L.; Roth, W.; Kadunz, G. Semiotics in Mathematics Education, (2016). https://www.springer.com/gp/book/9783319313696

Radford L. Teoria da Objetivação: Fundamentos e Aplicações para o Ensino de Ciências e Matemática (2020). São Paulo: Livraria da Física, p.43-67

Radford, L. (2003) Gestures, speech, and the sprouting of signs: A semiotic-cultural approach to students’ types of generalization. Mathematical Thinking and Learning, v.5, n. 1, p. 37-70.

Radford, L. (2013) Three key Concepts of the theory of objectification: Knowledge,knowing, and learning. Journal of Research in Mathematics Education, v. 2, n. 1, p. 7-44.

Radford, L. (2014) Sobre o papel das representações e artefatos no saber e aprender. Education Studies Mathematics, v.85, p. 405,

Radford, L. (2015) Introduction: The phenomenological, epistemological, and semiotic components of generalization. PNA, v. 9, n. 3, p. 129-141.

Radford, L (2017). Enseñanza y aprendizaje de las matemáticas: problemas semióticos,epistemológicos y prácticos. DIE - Doctorado Interinstitucional em Educación, Énfasis matemática. Universidad Distrital Francisco José de Caldas, Bogotá, Colômbia

Radford, L.;Schubring, G.;Seeger, F.(2015) Semiotics in mathematics education:epistemology, history, classroom, and culture. Rotterdam: Sense Publishers.

Radford, L.; Sabena, C. (2015) The Question of Method in a Vygotskian Semiotic Approach. Approaches to qualitative research in Mathematics education, p. 157-182,

Sabena, C. Multimodality and the Semiotic Bundle Lens: A Constructive Resonance with the Theory of Objectification. Segundo monográfico sobre Teoría de la Objetivación, v. 12, n. 4, p. 185-208, jul.2018.

Sabena, C.; Krause, C.; Maffia,(2016) A. L'analisi semiotica in ottica multimodale: dalla costruzione di quadro teoricoal networking con alter teorie - Relazione al XXXIII Seminario Nazionale di ricerca

Santaella, L (1990). O que é semiótica? Editora Brasiliense, 1990.

Santaella, L. (2005) Matrizes da linguagem e pensamento: sonora, visual, verbal: aplicações na hipermídia. São Paulo: Iluminuras, FAPESP, 2005.

Vergel, R.; Gárzon, P. J. R (2018). Álgebra escolar y pensamiento algebraico: aportes para el trabajo en el aula.:Editorial Universidad Distrital Francisco José de Caldas. Bogotá. Colômbia

Vergel, R. (2019) Una posible zona conceptual de formas de pensamiento aritmético "sofisticado" y proto-formas de pensamiento algebraico. In: CIAEM, 15, 2019,Medellín, Colômbia. Anais]. Medellín:, 2019. p. 1-18. https://conferencia.ciaem-dumate.org/index.php/xvciaem/xv/paper/viewFile/1072/571

Published

2025-05-28

Issue

Section

Artigos