Teaching the sine function based on musical sounds
DOI:
https://doi.org/10.5007/1981-1322.2025.e107371Keywords:
Trigonometric Functions, Music, Global Figural InterpretationAbstract
In Ancient Greece, music and mathematics were considered pillars of knowledge. It was in the 6th century BC that the first record of the relationship between these pillars appeared, in the so-called quadrivium. Over time, this relationship became closer, and today it can be established and studied at school. Knowing the relationship between music and mathematics can be a positive factor for teachers who teach trigonometric functions. In this sense, the present work aims to investigate the curve outline of the sine trigonometric function, in order to establish relationships with musical sounds, starting from a simplified mathematical model applied in GeoGebra. To this end, the Global Figural Interpretation Theory, proposed by the Theory of Semiotic Representation Registers (TRRS), is used. As a result, it is possible to recognize and understand the interference of the sine function parameters in sound production, as well as the direction of these parameters in the sound wave, particularly in the case of the musical note MI.
References
Anacleto, R. Anatomia do canal auditivo. [2015]. Disponível em: http://professor.pucgoias.edu.br/SiteDocente/admin/arquivosUpload/15347/material/ Aula%201%20Anatomia%20e%20fisiologia%20ouvido.pdf. Acesso em: 24 jan. 2025.
Boyer, C. B (2019). História da matemática. São Paulo Blucher 2019. Recurso online acervo UFFS.
Brasil. F. N D. E. Música. 2017. Disponível em: http://www.fnde.gov.br/index.php/acessibilidade/item/4098- m%C3%BAsica. Acesso em: 24 jan. 2025.
Bromberg, C. & Saito, F. As matemáticas, o monocórdio e o número sonoro. São Paulo: Livraria da Física, 2017. v. 1.
Duval, R. (1993). Registre de représentation semiotique et fonctionnement cognitif de la pensée. Annales de Didactique et de Sciences Cognitives. Strasbourg : IREM – ULP.
Duval, R. (2012).Registros de representação semiótica e funcionamento cognitivo do pensamento. Trad. MORETTI, M. T. Revemat, Florianópolis, v. 7, n. 2, p.266-297.
Filho, F. F. (2022). Síntese de som: uma proposta de ensino para funções periódicas. Dissertação de Mestrado. Universidade Federal de São Carlos, SP. ISBN 9788521216117
Med, B (1996). Teoria da música. Brasília, DF: MUSIMED.
Pereira, M. C. Matemática e música: de Pitágoras aos dias de hoje. 2013. 91 p. Dissertação em Matemática (Mestrado Profissional em Matemática) – Universidade Federal do Estado do Rio de Janeiro. Rio de Janeiro.
Prescinato, R. O violonista. 2011. Disponível em: http://oviolonista.blogspot.com/2011/10/notas-musicais-escala-cromatica.html. Acesso em: 24 jan. 2025.
Wheeler, R. M. (2014). The Science of Sound. Pearson New International Edition. Third edition.
Wright, D. (2019). Mathematics and Music. American Mathematical Society.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Lúcia Menoncini , Emanuela Graziela Dilkin

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors hold the copyright and grant the journal the right for their articles' first publication, being their works simultaneously licensed under the Creative Commons Attribution License (CC BY), which allows the sharing of such works with its authorship acknowledged and its initial publication in this journal.
Authors are allowed to enter into separate additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or as a book chapter, with an acknowledgment of its initial publication in this journal).
