Reasoning processes mobilized by DIC students to understand the Riemann integral
DOI:
https://doi.org/10.5007/1982-5153.2024.e93431Keywords:
Teaching differential and integral calculus, Definite integrals, Riemann integrals, Processes of mathematical reasoningAbstract
In this paper, we intend to identify the mathematical reasoning processes mobilized by Engineering students of a Public University of Paraná when solving a mathematical task and understand how such processes contribute to the elaboration of some of the layers of knowledge associated with Riemann Integrals. To this end, we consider data collected from working with an exploratory task involving Riemann Sums. This work is developed in a qualitative, interpretive perspective. About the mathematical reasoning processes mobilized, the students searched for conjectures, which in some moments were refuted, thus having the need to search for new conjectures and justifications. Subsequently, students formulated a generalization for the conjecture already justified. Such processes activated elements of two layers essential to understand the structure of the Riemman Integral, namely, the Product Layer and the Sum Layer.
References
BOGDAN, R. C.; BIKLEN, S. K. Investigação qualitativa em educação. Tradução Maria João Alvarez, Sara Bahia dos Santos e Telmo Mourinho Baptista. Porto: Porto Editora, 1994.
CARNEIRO, L. F. G.; ARAMAN, E. M. O.; TREVISAN, A. L. Procedimientos metodológicos en la investigación del razonamiento matemático de estudiantes cuando resuelven tareas exploratorias. PARADIGMA (MARACAY), p. 132-157, 2022.
ELLIS, A., ÖZGÜR, Z., REITEN, L. Teacher moves for supporting student reasoning. Mathematics Education Research Journal, v. 30, n. 2, p. 1-26, 2018.
GREEFRATH, G. et al. Basic mental models of integrals: theoretical conception, development of test instrument, and first results. ZDM, v.53, p. 649-661, 2021.
HADDAD, S. Que retiennent les nouveaux bacheliers de la notion d’intégrale enseignée aulycée? Petitx, v. 92, p. 7–32, 2013.
JEANNOTTE, D; KIERAN, C. A conceptual model of mathematical reasoning for school mathematics. Educational Studies in Mathematics, v. 96, p. 1-16, 2017.
JONES, S. R; LIM, Y. R; CHANDLER, K. R. Teaching Integration: How Certain Instructional Moves May Undermine the Potential Conceptual Value of the Riemann Sum and the Riemann Integral. International Journal of Science and Mathematics Education, v.15, p.1075–1095, 2017.
LANNIN, J., ELLIS, A. B., ELLIOT, R. Developing essential understanding of mathematics reasoning for teaching mathematics in prekindergarten-grade 8. Reston, VA: National Council of Teachers of Mathematics. 2011.
MATA-PEREIRA, J; PONTE, J. P. Enhancing students’ mathematical reasoning in the classroom: teacher actions facilitating generalization and justification. Educational Studies in Mathematics, v. 96, p. 169–186, 2017.
PONTE, J. P. Gestão curricular em Matemática. Em: GTI (Ed.), O professor e o desenvolvimento curricular. Lisboa: APM, 2005. p. 11-34.
PONTE, J. P; QUARESMA, M; MATA-PEREIRA, J. Como desenvolver o raciocínio matemático na sala de aula? Educação e Matemática, v. 156, p. 7-11, 2020.
RODRIGUES, C.; MENEZES, L.; PONTE, J. P. Práticas de Discussão em Sala de Aula de Matemática: os casos de dois professores. Bolema, v. 12, n. 61, p. 398-418, 2018.
SEALEY, V. Definite integrals, riemann sums, and area under a curve: what is necessary and sufficient?. Psychology of Mathematics Education, Mérida, Editora Universidad Pedagógica Nacional, p.46 - 53, v. 2, nov. 2006.
SEALEY, V. A Framework for Characterizing Student Understanding of Riemann Sums and Definite Integrals. Journal of Mathematical Behavior, n. 33, p. 230-245, 2014.
SENGE, P. A quinta disciplina. 28.ed. rev. e ampl. Rio de Janeiro: Best Seller, 2012.
TREVISAN, A. L.; GOES, H. H. D. O método da exaustão eo cálculo de áreas: proposta e uma tarefa com auxílio do GeoGebra. Educação Matemática em Revista, v. 21, n. 52, p. 79-85, 2016.
TREVISAN, A. L.; MENDES, M. T. Ambientes de ensino e aprendizagem de cálculo diferencial e integral organizados a partir de episódios de resolução de tarefas: uma proposta. Revista Brasileira de Ensino de Ciência e Tecnologia, v. 11, p. 209-227, 2018.
TREVISAN, A. L.; ARAMAN, E. M. O. Processos de Raciocínio Matemático Mobilizados por Estudantes de Cálculo em Tarefas Envolvendo Representações Gráficas. Bolema, v. 35, n. 69, p. 158-178, abr. 2021.
TREVISAN, A. L.; ALVES, R. M. A.; NEGRINI, M. V. Ambiente de ensino e de aprendizagem de Cálculo pautado em episódios de resolução de tarefas: resultados e perspectivas futuras. In: MENDES, M. T.; JUSTULIN, A. M. (Org.). Produtos educacionais e resultados de pesquisas em Educação Matemática. 1 ed. São Paulo: Livraria da Física, v. 1, 2021, p. 155-174.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain the copyright and publishing rights to their works without restrictions.
By submitting their manuscripts, authors grant Revista Alexandria the exclusive right of first publication, with the work simultaneously licensed under a Creative Commons Attribution (CC BY) 4.0 International License. This license allows others to remix, adapt, and build upon the published work, provided that appropriate credit is given to the author(s) and the original publication in this journal.
Authors are also permitted to enter into separate, additional contractual arrangements for the non-exclusive distribution of the published version of their work in this journal (for example, depositing it in an institutional repository, posting it on a personal website, publishing translations, or including it as a book chapter), provided that authorship and the original publication in Revista Alexandria are properly acknowledged.
