Flattening COVID-19's curve: Arguing Strategies Using GeoGebra

Authors

DOI:

https://doi.org/10.5007/1981-1322.2020.e74617

Abstract

 

Motivated by COVID-19 pandemic, in this work we approach the two main strategies to fight the proliferation of this disease: the social distancing and the improving people’s hygiene habits. The objective is to take this discussion into the school environment, seeking to show students at this level of education, that these actions can directly influence the transmission rate of the virus, and to lead the flattening of the infected curve.In this sense, we development a qualitative research, with an exploratory-explanatory characteristic, anchored in mathematical modeling, aiming to describe the effectiveness of these strategies from experimentation in a computational environment.Therefore, from the classic epidemiological model SIR, we developed two applications on GeoGebra. The first one is presented in the form of experimentation activity, directed to the student, exemplifying the application of mathematics in real-world problems: the spread of diseases. The second one is for the teacher; It shows how to lend the reputation of mathematics, the strength of modeling as a teaching and learning methodology, and the power of dynamic mathematics from GeoGebra to reinforce the importance of measures to combat COVID-19, that due to economic consequences, they suffer increasing resistance by the people. Our applications demonstrate the GeoGebra increasing ability to deal with sophisticated mathematical model. As hence, it is possible to discussing relevant social problemas in basic education already, with effective participation of the students.

Author Biographies

Esdras Jafet Aristides da Silva, University of Pernambuco

 

Esdras Jafet Aristides da Silva

Universidade de Pernambuco - Campus Mata Norte

Prof. Adjunto do Departamento de Matemática

https://orcid.org/0000-0001-7510-6238

CV: http://lattes.cnpq.br/7486654197584482

Atuação: Matemática Aplicada/ Ensino de Matemática / Epidemiologia Matemática/ Matemática Computacional.

Doutor em Matemática pela Universidade Federal de Pernambuco

 

 

Douglas de Souza Rodrigues da Silva, University of Pernambuco

 

Douglas de Souza Rodrigues da Silva

Universidade de Pernambuco - Campus Mata Norte

https://orcid.org/0000-0002-0739-0641

CV: http://lattes.cnpq.br/9768062806218799

References

Aquino, E. M. L., et al. (2020). Social distancing measures to control the COVID-19 pandemic: potential impacts and challenges in Brazil. Ciência & Saúde Coletiva. doi: https://doi.org/10.1590/1413-81232020256.1.10502020

Bassanezi, R. C. (2002). Ensino-aprendizagem com Modelagem Matemática: uma nova estratégia. São Paulo: Editora Contexto.

Bezerra, F. D. M. & Ramos, M. W. A. (2020) Métodos de Euler e Runge-Kutta por meio de um applet do geogebra. Professor de Matemática Online (PMO). doi: https://doi.org/10.21711/2319023x2020/pmo82

Boyce, W. C. (2020). Equações Diferenciais Ordinárias e Problemas de Valores de Contorno. São Paulo: Livros Técnicos e Científicos (LTC).

Brasil. (2019). Base Nacional Comum Curricular (BNCC): Educação é base. Brasília, MEC/CONSED/UDIME. Recuperado de http://basenacionalcomum.mec.gov.br/images/BNCC_EI_EF_110518_versaofinal_site.pdf

Brasil. (2020). Boletim Epidemiológico: Doença pelo coronavírus 2019. Brasil, Ministério da Saúde. Recuperado de https://www.saude.gov.br/images/pdf/2020/April/06/2020-04-06-BE7-Boletim-Especial-do-COE-Atualizacao-da Avaliacao-de-Risco.pdf

Brauer, F. & Chaves-Castillo, C. (2010). Mathematical Models in Population Biology and Epidemiology. New York: Springer.

Castilho, C., et al. (2020). Assessing the efficiency of different control stategies for the COVID-19 epidemic. Eletronic Journal of Differencial Equations, v. 2020. n. 64, Recuperado de: http://ejde.math.txstate.edu

Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Review, v. 42, n. 4, 599-653. doi: https://doi.org/10.1137/S0036144500371907

Martcheva, M. (2015). An introduction to mathematical epidemiology. New York: Springer.

Read, J. M. et al. (2010) Novel coronavirus 2019-ncov: early estimation of epidemiological parameters and epidemic predictions. medRvix, Cold Spring Harbor Laboratory Press. doi: https://doi.org/10.1101/2020.01.23.20018549

Santos, M. C. & Lima, P. F. (2010). Considerações sobre a matemática no ensino fundamental. Anais do I seminário nacional: currículo em movimento-perspectivas atuais. Belo horizonte.

Sayão, L. F. (2001). Modelos Teóricos em Ciência da Informação-Abstração e Método Científico. Ciência da informação, SciELO Brasil, v. 30, n. 1, 82-91.

Shong, P. X. et al. (2020). An epidemiologica forecast model and software assessing intervetions on COVID-19 epidemic in China. MedRxiv, Cold Spring Habor Laboratory Press. Doi: https://doi.org/10.1101/2020.02.29.200294.

Sohrabi, C. et al. (2020). World Health Organization Declares Global Emergency: A review of the 2019 novel coronavirus (COVID-19). International Journal of Surgery, 76, 71-76. doi: https://doi.org/10.1016/j.ijsu.2020.02.034

Tavares, F. G. & Lopes, C. E. (2019). Mapeamento Do Uso Do Geogebra No Ensino De Estatística. Revemat: Revista Eletrônica de Educação Matemática. doi: http://doi.org/105007/1981-1322.2019.e62800

Stewart, J. & Day, T. (2016). Biocalculus: Calculus, Probability, and Statistics for the Life Sciences. USA: Cengage Learning.

Weiss, H. H. (2013). The SIR Model and the Foundations of Public Health. MATerials MAThemàtics, v. 2031, 1-17.

Published

2020-12-10

Issue

Section

Artigos