Game "Rectangular Grid 3 x 4": a proposal for the development of combinatorial reasoning

Authors

DOI:

https://doi.org/10.5007/1981-1322.2021.e80708

Abstract

This work aims to make known a proposal of teaching learning about basic content of combinatorial analysis through a board game named Grid Rectangular 3 x 4. This proposal aims to foster the appropriation and exercise of combinatorial reasoning while tree diagrams are constructed with the aim of showing some (or all) possibilities as the game can unfold, based on the players' decision making when “ pet bottle caps ”on the game board. In continuation of the game, and the consequent recognition of the stipulated rules, combinatorial problems are proposed in order to meet what is advocated in the Problem Solving theory. The proposal is in line with indications present in the BNCC - National Common Curricular Base for teaching mathematics learning in the early years of elementary school. This is a bibliographic research that aims to measure the importance of the proposition and creation of a game that contributes to improving the teaching and learning process of Mathematics with students and teachers of the early years, and this research culminated with the proposal of the game. Through the game the student is expected to feel encouraged to appropriate, exercise and develop combinatorial reasoning while building a tree diagram for particular game situations, from the beginning - possible to occur at any time during the course of a game until it arrives to its end, in order to know and account for the chances of victory for each player.

Author Biography

Paulo Jorge Magalhães Teixeira, Universidade Federal Fluminense - UFF/Departamento de Análise - GAN

<

References

Batanero, C., Godino, J. D. & Navarro-Pelayo, V. (1997). Combinatorial reasoning and its assessment. In: Gal, I.; Garfield, D.J.B. (Ed.). The assessment challenge in statistics educativo. Minnesota: IOS Press, 239-252. Recuperado de http://www.stat.auckland.ac.nz/~iase/publications/assessbkref

Brasil. (1997). Parâmetros Curriculares Nacionais. Matemática. 1º e 2º ciclos. Brasília: Ministério da Educação. Secretaria de Ensino Fundamental.

Cobb, P., Confrey, J., DiSessa, A., Lehrer, R. & Schauble, L. (2003). Design Experiments in Educational Research. American Educational Research Association, v. 32(1), 9-13.

Fischbein, E. (1975). The intuitive sources of probabilistic thinking in children. Dordrecht: Reidel.

Franco, M. A. S. (2005). Pedagogia da Pesquisa-ação. Revista Educação e Pesquisa, v.31(3), 483-502. Recuperado de http:// www.sciwlo.br/pdf/ep/v31/n3/a11v31n3.pdf

Freire, P. (2013). Pedagogia da autonomia: saberes necessários à prática educativa. São Paulo: Paz e Terra.

Lopes, J. M. & Rezende, J.C. (2010). Um Novo Jogo para o Estudo do Raciocínio Combinatório e do Cálculo de Probabilidade. Bolema, v.23(36), 657-682.

Navarro-Pelayo, V., Batanero, C. & Godino, J. D. (1996). Razonamiento combinatório em alumnos de secundaria. Educación Matemática, v.8(1), 26-39.

Teixeira, P. J. M. (2014). Resolvendo problemas de Análise Combinatória nos anos iniciais do Ensino Fundamental. Rio de Janeiro: Editora Ciência Moderna Ltda.

TEIXEIRA, P.J.M. (2020) Práticas de professores do ensino fundamental durante a resolução de problemas de contagem. Educação Matemática Pesquisa. São Paulo, v.22, n.2, p.081-113.

TEIXEIRA, P.J.M. (2021) Jogos para o ensino-aprendizagem de Combinatória na Educação Básica. Rio de Janeiro: Editora Ciência Moderna Ltda. (no prelo).

Published

2021-12-14

Issue

Section

Artigos