A Theoretical Framework for Considering Materiality in an Analysis of Ethnographic Data on the Playing of Uril: Techniques of the Body
DOI:
https://doi.org/10.5007/1981-1322.2024.e97312Keywords:
Techniques Of The Body, Ontological Turn, MancalaAbstract
How can mathematics education establish a dialogue with anthropology and in particular with the ontological turn? Our contribution to answering this question will be through a discussion of concepts of materiality and the anthropology of things, against the backdrop of our consideration of their applicability to our research in particular. Without conducting the analysis of our data itself, we will focus on if and how the different perspectives reviewed could be a good fit for our analysis. We start with a cautionary tale to remind us of precautions that we need to take, namely avoiding borrowing theories from other areas without establishing dialogues with experienced researchers in those areas. We make a brief introduction to our research work, which is an ethnography about the uril game played on São Vicente Island, Cape Verde. We present a review of the literature on the so-called ontological turn, with special attention to the concepts of materiality and agency. We conclude that Mauss's notion of Techniques of the Body will be a suitable anthropological framework for a subsequent analysis of our data, and consider it will represent move away from some basic assumptions in mathematics education.
References
Abrahamson, D., Nathan, M. J., Williams-Pierce, C., Walkington, C., Ottmar, E. R., Soto, H., & Alibali, M. W. (2020). The future of embodied design for mathematics teaching and learning. Frontiers in Education,
Appadurai, A. (1988). The social life of things: Commodities in cultural perspective. Cambridge University Press.
Bennett, G. T. (1979). Wari. In R. S. Rattray (Ed.), Religion & art in Ashanti (pp. 382-398). AMS Press.
Bishop, A. J. (1988). Mathematical enculturation: a cultural perspective on mathematics education. Kluwer.
Bourdieu, P. (2003). Esboço de uma teoria da prática. In R. Ortiz (Ed.), A sociologia de Pierre Bourdieu (pp. 39-72). Olho d'Água.
Bourdieu, P. (2004). Marcel Mauss, aujourd’hui. Sociologie et sociétés, 36(2), 15-22.
Braunholtz, H. J. (1931). The game of Mweso in Uganda. Man, 31, 121-122.
Broline, D. M., & Loeb, D. E. (1995). The combinatorics of Mancala-type games: Ayo, Tchoukaitlon, and 1/pi. UMAP Journal, 16, 21-36.
Brussi, J. D. E. (2015). Batendo bilros: rendeiras e rendas em Canaan (Trairi – CE) Universidade de Brasília].
Cavalcante, L. M., & Potiguar Junior, P. L. T. (2019). O karatê-do como instrumento de formação do caráter e personalidade dos praticantes através de suas técnicas corporais. Motrivivência, 31(60).
Chaplin, J. H. (1956). A note on mancala games in Northern Rhodesia. Man, 56, 168.
Chevallard, Y. (1990). On mathematics education and culture: critical afterthoughts. Educational Studies in Mathematics, 21(1), 3-27. http://www.jstor.org/stable/3482216
Connors, J. (1990). When mathematics meets anthropology: the need for interdisciplinary dialogue. Educational Studies in Mathematics, 21(5), 461-469. http://www.jstor.org/stable/3482553
Cruz, R., Cage, C., & Lian, M. (2000). Let’s play mancala and sungka: learning math and social skills through ancient multicultural games. Teaching Exceptional Children, 32(3), 38.
de Aquino Vieira, G. L. S., & Araújo, N. M. (2021). O sol nascente: um ensaio sobre realismo e técnicas corporais no wrestling, utilizando da luta entre Shinsuke Nakamura contra Sami Zayn. Ensaios, 18, 28-46.
De Freitas, E., & Sinclair, N. (2012). Diagram, gesture, agency: Theorizing embodiment in the mathematics classroom. Educational Studies in Mathematics, 80, 133-152.
de Freitas, E., & Sinclair, N. (2013). New materialist ontologies in mathematics education: The body in/of mathematics. Educational Studies in Mathematics, 83, 453-470.
De Freitas, E., & Sinclair, N. (2014). Mathematics and the body: Material entanglements in the classroom. Cambridge University Press.
De Freitas, E., & Sinclair, N. (2020). Measurement as relational, intensive and analogical: Towards a minor mathematics. The Journal of Mathematical Behavior, 59, 100796.
de Voogt, A., Rougetet, L., & Epstein, N. (2018). Using mancala in the mathematics classroom. The Mathematics Teacher, 112(1), 14-21. https://doi.org/10.5951/mathteacher.112.1.0014
Diogenes, A. L. B., & Ferreira, G. S. (2020). O jogo Mancala como estratégia pedagógica Etnomatemática: relato de uma experiência numa turma de 2º ano do Ensino Fundamental da Escola Estadual “Professor Elídio Duque no município de Salinas-MG. Em tempo de histórias, 1(36).
Fernald, R. D. (1978). A comparison of four variations of mancala found in Central Africa. Anthropos, 73, 205-214.
Fowler, D. (1996). Wari Construction Set Integrating Technology with Multicultural Mathematics. Journal of Computers in Mathematics and Science Teaching, 15(3), 237-248.
Gell, A. (1998). Art and agency: an anthropological theory. Clarendon Press.
Gombrich, E. H. (1979). The sense of order: a study in the psychology of decorative art. Cornell University Press.
Graça, A. (1998). Jogo de oril: regras, estratégias e teorias. Edição da Onds.
Haraway, D. (1991). A cyborg manifesto: science, technology, and socialist-feminism in the late twentieth century. In D. Haraway (Ed.), Simians, Cyborgs and Women: The Reinvention of Nature (pp. 149-181). Free Association Books.
Herskovits, M. J. (1932). Wari in the New World. The Journal of the Royal Anthropological Institute of Great Britain and Ireland, 62, 23-37.
Holbraad, M., & Pedersen, M. A. (2017). The ontological turn: an anthropological exposition. Cambridge University Press.
Keane, W. (1997). Signs of recognition. University of California Press.
Latour, B. (1994). Jamais fomos modernos. Editora 34.
Latour, B. (2004). How to talk about the body? the normative dimension of science studies. Body & Society, 10(2-3), 205-229. https://doi.org/10.1177/1357034x04042943
Latour, B. (2012). Reagregando o social: uma introdução à Teoria do Ator-Rede. Edufba.
Latour, B. (2014). Agency at the time of the anthropocene. New Literary History, 45(1), 1-18. http://www.jstor.org.cmich.idm.oclc.org/stable/24542578
Latour, B., & Woolgar, S. (2013). Laboratory life: The construction of scientific facts. Princeton university press.
Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge university press.
Marin, G. (1931). Somali games. The Journal of the Royal Anthropological Institute of Great Britain and Ireland, 61, 499-511.
Mauss, M. (1934). As técnicas corporais. In M. Mauss (Ed.), Sociologia e Antropologia (pp. 209-234). Cosac Naify.
Miller, D. (2005). Materiality. Duke University Press.
Miller, D. (2005). Materiality. Duke University Press.
Musesti, A., Paolini, M., & Reale, C. (2015). An optimal bound on the number of moves for open mancala. Discrete mathematics, 338(11), 1827-1844. https://doi.org/10.1016/j.disc.2015.04.013
Neller, T. W., & Neller, T. C. (2023, November 22–24, 2022). FairKalah: towards fair mancala play Computers and Games: International Conference, CG 2022, Virtual Event.
Núñez, R. E., Edwards, L. D., & Filipe Matos, J. (1999). Embodied cognition as grounding for situatedness and context in mathematics education. Educational Studies in Mathematics, 39(1-3), 45-65.
Odeleye, C. A. O. (1977). Ayo: A popular Yoruba game. Oxford University Press.
Pinney, C. (2005). Things happen: or, from which moment does that object come? In D. Miller (Ed.), Materiality (pp. 256-272). Duke University Press.
Powell, A., & Temple, O. (2001). Seeding ethnomathematics with oware: Sankofa. Teaching children mathematics, 7(6), 369-375.
Powell-Cotton, P. H. G., & Braunholtz, H. J. (1931). A mancala board called "Songo". Man, 31, 123.
Ralston, R. D. (1992). Change and migration of a game called mankala/warri in Africa and the Americas during the colonial period. African Studies Center.
Rocha, A. C., Rolande, J. F., & de Sousa Abreu, C. M. (2021). Corpo, artefato e movimento: técnicas corporais na arte de tecer e trançar entre os Tenetehar. Revista em Favor de Igualdade Racial, 4(1), 19-31.
Scaglia, A. J., Fabiani, D. J. F., & de Godoy, L. B. (2020). Dos jogos tradicionais às técnicas corporais: um estudo a partir das relações entre jogo e cultura lúdica. Corpoconsciência, 187-207.
Schlanger, N. (2019). Marcel Mauss (1872–1950): Socializing the body through techniques. History of Humanities, 4(2), 313-317.
Silva, J. N. d., Santos, A. C. d., & Cusati, I. C. (2020). Família mancala: potencialidades dos jogos africanos para o desenvolvimento do conhecimento matemático. Revista Imagens da Educação, 10(3), 96-111.
Stigler, J. W. (1989). Mathematics meets culture. Journal for Research in Mathematics Education, 20(4), 367-370. http://www.jstor.org/stable/749442
Strathern, M. (1990). Artefacts of history: events and the interpretation of images. Culture and History in the Pacific, 27, 25-44.
Taalman, L., Tongen, A., Warren, B., Wyrick-Flax, F., & Yoon, I. (2013). Mancala matrices. The College Mathematics Journal, 44(4), 273-283. https://doi.org/10.4169/college.math.j.44.4.273
Tosta, S. d. F. P., da Silva, W. L., & Costa, L. A. L. (2023). Mauss, religião e técnicas corporais: Estudo com alunos evangélicos da zona rural de uma escola pública de Minas Gerais/Brasil. Esporte e Sociedade(37).
Tran, C., Smith, B., & Buschkuehl, M. (2017). Support of mathematical thinking through embodied cognition: Nondigital and digital approaches. Cognitive research: principles and implications, 2, 1-18.
Vergnaud, G. (2019). Quais questões a teoria dos campos conceituais busca responder? Caminhos da Educação Matemática em Revista, 9(1), 5-28.
Viveiros de Castro, E. (1998). Cosmological deixis and Amerindian perspectivism. The Journal of the Royal Anthropological Institute, 4(3), 469-488. https://doi.org/10.2307/3034157
White, L. A. (1959). The evolution of culture : the development of civilization to the fall of Rome. McGraw-Hill Book Company, Inc. https://doi.org/10.4324/9781315418575
Whitney Rhianna Fillers, B. L., & Andrew, S. (2014). Mancala as Nim. The College Mathematics Journal, 45(5), 350-356. https://doi.org/10.4169/college.math.j.45.5.350
Zaslavsky, C. (1995). The multicultural math classroom: bringing in the world Heinemann.
Zaslavsky, C. (1998). Math games & activities from around the world. Chicago Review Press.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ana Lúcia Braz Dias, Juliana Braz Dias

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors hold the copyright and grant the journal the right for their articles' first publication, being their works simultaneously licensed under the Creative Commons Attribution License (CC BY), which allows the sharing of such works with its authorship acknowledged and its initial publication in this journal.
Authors are allowed to enter into separate additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or as a book chapter, with an acknowledgment of its initial publication in this journal).
