Aprimorando a percepção espacial em geometria molecular através do estudo com mapas conceituais e tecnologia de realidade aumentada

Autores

DOI:

https://doi.org/10.5007/1982-5153.2023.e91971

Palavras-chave:

Estrutura molecular, Mapa conceitual, Realidade aumentada, Representação visual

Resumo

O objetivo foi avaliar o efeito da aplicação de mapa conceitual com realidade aumentada na aprendizagem de geometria molecular. Estudantes (N=55) do Ensino Superior responderam a um pré-teste sobre geometria. Separou-se os estudantes em dois grupos para revisarem o assunto com o apoio de um mapa conceitual com moléculas estáticas (grupo A) e de um mapa conceitual com realidade aumentada (grupo B) – recurso digital desenvolvido especialmente para esta pesquisa. Solicitou-se que todos os estudantes construíssem três moléculas físicas com bolas de isopor e palitos. Atribuiu-se uma nota de 0 a 10 para o pré-teste e tarefa de construção de moléculas físicas. O resultado do pré-teste mostrou que não houve diferença significativa entre os grupos. Na tarefa de construção de moléculas físicas houve diferença significativa entre os grupos. Os resultados sugerem que o desempenho superior do grupo B pode ter sido influenciado por fatores emocionais e de atenção, além da interação com as moléculas em movimento na realidade aumentada, embora essas suposições não tenham sido diretamente comprovadas pela pesquisa principal.

Biografia do Autor

Kleyfton Soares da Silva, Instituto Federal de Alagoas

Doutorando em Ensino de Ciências (Química) na Universidade de São Paulo (USP), Professor de Química do Instituto Federal de Educação, Ciência e Tecnologia de Alagoas (Campus Penedo), Mestre em Ensino de Ciências e Matemática pela Universidade Federal de Sergipe (UFS), Licenciado em Química pelo Instituto Federal de Alagoas (IFAL) com período sanduíche no Institute of Technology Sligo (IT Sligo, Irlanda). É membro do grupo de pesquisa Mapas Conceituais (USP) e atualmente conduz pesquisas em Ensino de Química na perspectiva teórica da Psicologia Educacional e Neurociência Cognitiva.

Paulo Rogério Miranda Correia, Universidade de São Paulo

Contratado em 2005 como professor doutor da Escola de Artes, Ciências e Humanidades (EACH/USP Leste), sua atuação docente ocorre junto ao curso de Licenciatura em Ciências da Natureza. Em 2020, tornou-se professor associado após aprovação no concurso de livre docência na área de Didática. Coordena o Grupo de Pesquisa Mapas Conceituais, que conta com alunos de iniciação científica e de pós-graduação. É orientador credenciado no Programa de Pós-graduação Interunidades em Ensino de Ciências da USP desde 2005. Foi o presidente da Sexta Conferência Internacional sobre Mapeamento Conceitual (CMC-2014), organizado em parceria com o Institute for Human and Machine Cognition (IHMC). Atualmente, sua linha de pesquisa está relacionada com o uso do mapeamento conceitual como ferramenta para a gestão da informação e do conhecimento.

Referências

CHEN, C. H.; HUANG, C. Y.; CHOU, Y. Y. Effects of augmented reality-based multidimensional concept maps on students’ learning achievement, motivation and acceptance. Univ Access Inf Soc, v. 18, p. 257-268, 2019. DOI: https://doi.org/10.1007/s10209-017-0595-z

CHEN, S.; LIU, S. Using augmented reality to experiment with elements in a chemistry course. Computers in Human Behavior, v. 111, 2020. DOI: https://doi.org/10.1016/j.chb.2020.106418

CHOU, Y. Y.; WU, P. F.; HUANG, C. Y. et al. Effect of digital learning using augmented reality with multidimensional concept map in elementary science course. Asia-Pacific Edu Res, v. 31, p. 383-393, 2022. DOI: https://doi.org/10.1007/s40299-021-00580-y

EILAM, B.; GILBERT, J. K. (Eds.). Science teachers’ use of visual representations. Springer International Publishing, New York, 2014.

FERK, V.; VRTACNIK, M.; BLEJEC, A.; GRIL, A. Students' understanding of molecular structure representations. International Journal of Science Education, v. 25, n. 10, p. 1227-1245, 2003. DOI: 10.1080/0950069022000038231

GILBERT, J. K. Visualization: A metacognitive skill in science and science education. In: GILBERT, J. K. (Ed.). Visualization in science education. p. 9–27. Dordrecht: Springer, 2007.

GOBERT, J. D. Leveraging technology and cognitive theory on visualization to promote students’ science. In: GILBERT, J. K. (Ed.). Visualization in science education. V. 1, p. 73–90. Dordrecht: Springer, 2005.

JOHNSTONE, A. H. The development of chemistry teaching. The Forum, v. 70, n. 9, 1993.

JUSTI, R.; GILBERT, J. K.; FERREIRA, P. F. M. The application of a ‘model of modeling’ to illustrate the importance of metavisualisation in respect of the three types of representation. In: GILBERT, J. K; TREAGUST, D. F. (Eds.). Multiple representations in chemical education. p. 285–307. Dordrecht: Springer, 2009.

KALYUGA, S.; AYRES, P.; CHANDLER, P.; SWELLER, J. The expertise reversal effect. Educational Psychologist, 38, p. 23–31, 2003. DOI: https://doi.org/10.1207/S15326985EP3801_4

KORAKAKIS, G.; PAVLATOU, E. A.; PALYVOS, J. A.; SPYRELLIS, N. 3D visualization types in multimedia applications for science learning: A case study for 8th grade students in Greece. Computers & Education, v. 52, n. 2, 2009, p. 390-401, 2009. DOI: https://doi.org/10.1016/j.compedu.2008.09.011

KOZMA, R.; RUSSELL, J. Students becoming chemists: developing representational competence. In: GILBERT, J. (Ed.). Visualization in Science Education, p. 121-145, Dordrecht, The Netherlands: Spinger, 2005.

LEAHY, W.; SWELLER, J. The imagination effect increases with an increased intrinsic cognitive load. Applied Cognitive Psychology, v. 22, n. 2, p. 273-283, 2008. DOI: https://doi.org/10.1002/acp.1373

LIN, Y. I.; SON, J. Y.; RUDD II, J. A. Asymmetric translation between multiple representations in chemistry. International Journal of Science Education, v. 38, n. 4, 644-662, 2016. DOI: https://doi.org/10.1080/09500693.2016.1144945

MARSON, G. A.; TORRES, B. B. Fostering multirepresentational levels of chemical concepts: a framework to develop educational software. J. Chem. Educ., v. 88, n. 12, p. 1616–1622, 2011. DOI: https://doi.org/10.1021/ed100819u

MARTINA, A. R. Supporting student’s learning with multiple visual representations. In: HORVATH, J. C.; LODGE, J. M.; HATTIE, J. (Eds). From the laboratory to the classroom: translating science of learning for teachers. Cap. 9. 1ed. New York: Routledge, 2017.

POUW, W. ROP, G.; KONING, B.; PAAS, F. The cognitive basis for the split-attention effect. Journal of Experimental Psychology-general, v. 148, n. 11, p. 2058-2075, 2019. DOI: https://doi.org/10.1037/xge0000578

SILVA, K. S. A neurociência cognitiva como base da aprendizagem de geometria molecular: um estudo sobre atributos do funcionamento cerebral relacionados à memória de longo prazo. 2018. Dissertação (Mestrado Acadêmico em Ensino de Ciências e Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2018.

SILVA, K. S.; FONSECA, L. S. Neurociência e educação: estratégias multissensoriais para a aprendizagem de geometria molecular. Investigações em Ensino de Ciências, v. 26, n. 01, p. 01-26, 2021. DOI: http://dx.doi.org/10.22600/1518-795.ienci2021v26n1p01

SILVA, K. S.; FONSECA, L. S.; CORREIA, P. R. M. Abordagem neurocognitiva de processos atencionais envolvidos na aprendizagem mediada por mapas conceituais. Revista Brasileira de Ensino de Ciência e Tecnologia, Ponta Grossa, v. 13, n. 2, p. 247-268, 2020. DOI: 10.3895/rbect.v13n2.9421

WRIGHT, R.; THOMPSON, W. L.; GANIS, G.; NEWCOMBE, N. S.; KOSSLYN, S. M. Training generalized spatial skills, Psychonomic Bulletin & Review, v. 15, n. 4, p. 763-771, 2008.

Arquivos adicionais

Publicado

2023-11-24

Edição

Seção

Artigos