Enhancing spatial perception in molecular geometry through concept mapping and augmented reality technology
DOI:
https://doi.org/10.5007/1982-5153.2023.e91971Keywords:
Molecular structure, Concept map, Augmented reality, Visual representationAbstract
The aim was to evaluate the effect of applying a concept map with augmented reality on molecular geometry learning. Higher Education students (N=55) answered a pre-test on molecular geometry. The students were separated into two groups to review the subject with the support of a conceptual map with static molecules (group A) and a conceptual map with augmented reality (group B) – a digital resource developed especially for this research. All students were asked to build three molecules with styrofoam balls and wood sticks. A score from 0 to 10 was assigned to the pre-test and task of building physical molecules. The result of the pre-test showed that there was no significant difference between the groups. In the task of building physical molecules there was a significant difference between the groups. The results suggest that the higher performance of Group B may have been influenced by emotional and attention-related factors, in addition to the interaction with the dynamic molecules in augmented reality, although these assumptions have not been directly substantiated by the main research.
References
CHEN, C. H.; HUANG, C. Y.; CHOU, Y. Y. Effects of augmented reality-based multidimensional concept maps on students’ learning achievement, motivation and acceptance. Univ Access Inf Soc, v. 18, p. 257-268, 2019. DOI: https://doi.org/10.1007/s10209-017-0595-z
CHEN, S.; LIU, S. Using augmented reality to experiment with elements in a chemistry course. Computers in Human Behavior, v. 111, 2020. DOI: https://doi.org/10.1016/j.chb.2020.106418
CHOU, Y. Y.; WU, P. F.; HUANG, C. Y. et al. Effect of digital learning using augmented reality with multidimensional concept map in elementary science course. Asia-Pacific Edu Res, v. 31, p. 383-393, 2022. DOI: https://doi.org/10.1007/s40299-021-00580-y
EILAM, B.; GILBERT, J. K. (Eds.). Science teachers’ use of visual representations. Springer International Publishing, New York, 2014.
FERK, V.; VRTACNIK, M.; BLEJEC, A.; GRIL, A. Students' understanding of molecular structure representations. International Journal of Science Education, v. 25, n. 10, p. 1227-1245, 2003. DOI: 10.1080/0950069022000038231
GILBERT, J. K. Visualization: A metacognitive skill in science and science education. In: GILBERT, J. K. (Ed.). Visualization in science education. p. 9–27. Dordrecht: Springer, 2007.
GOBERT, J. D. Leveraging technology and cognitive theory on visualization to promote students’ science. In: GILBERT, J. K. (Ed.). Visualization in science education. V. 1, p. 73–90. Dordrecht: Springer, 2005.
JOHNSTONE, A. H. The development of chemistry teaching. The Forum, v. 70, n. 9, 1993.
JUSTI, R.; GILBERT, J. K.; FERREIRA, P. F. M. The application of a ‘model of modeling’ to illustrate the importance of metavisualisation in respect of the three types of representation. In: GILBERT, J. K; TREAGUST, D. F. (Eds.). Multiple representations in chemical education. p. 285–307. Dordrecht: Springer, 2009.
KALYUGA, S.; AYRES, P.; CHANDLER, P.; SWELLER, J. The expertise reversal effect. Educational Psychologist, 38, p. 23–31, 2003. DOI: https://doi.org/10.1207/S15326985EP3801_4
KORAKAKIS, G.; PAVLATOU, E. A.; PALYVOS, J. A.; SPYRELLIS, N. 3D visualization types in multimedia applications for science learning: A case study for 8th grade students in Greece. Computers & Education, v. 52, n. 2, 2009, p. 390-401, 2009. DOI: https://doi.org/10.1016/j.compedu.2008.09.011
KOZMA, R.; RUSSELL, J. Students becoming chemists: developing representational competence. In: GILBERT, J. (Ed.). Visualization in Science Education, p. 121-145, Dordrecht, The Netherlands: Spinger, 2005.
LEAHY, W.; SWELLER, J. The imagination effect increases with an increased intrinsic cognitive load. Applied Cognitive Psychology, v. 22, n. 2, p. 273-283, 2008. DOI: https://doi.org/10.1002/acp.1373
LIN, Y. I.; SON, J. Y.; RUDD II, J. A. Asymmetric translation between multiple representations in chemistry. International Journal of Science Education, v. 38, n. 4, 644-662, 2016. DOI: https://doi.org/10.1080/09500693.2016.1144945
MARSON, G. A.; TORRES, B. B. Fostering multirepresentational levels of chemical concepts: a framework to develop educational software. J. Chem. Educ., v. 88, n. 12, p. 1616–1622, 2011. DOI: https://doi.org/10.1021/ed100819u
MARTINA, A. R. Supporting student’s learning with multiple visual representations. In: HORVATH, J. C.; LODGE, J. M.; HATTIE, J. (Eds). From the laboratory to the classroom: translating science of learning for teachers. Cap. 9. 1ed. New York: Routledge, 2017.
POUW, W. ROP, G.; KONING, B.; PAAS, F. The cognitive basis for the split-attention effect. Journal of Experimental Psychology-general, v. 148, n. 11, p. 2058-2075, 2019. DOI: https://doi.org/10.1037/xge0000578
SILVA, K. S. A neurociência cognitiva como base da aprendizagem de geometria molecular: um estudo sobre atributos do funcionamento cerebral relacionados à memória de longo prazo. 2018. Dissertação (Mestrado Acadêmico em Ensino de Ciências e Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2018.
SILVA, K. S.; FONSECA, L. S. Neurociência e educação: estratégias multissensoriais para a aprendizagem de geometria molecular. Investigações em Ensino de Ciências, v. 26, n. 01, p. 01-26, 2021. DOI: http://dx.doi.org/10.22600/1518-795.ienci2021v26n1p01
SILVA, K. S.; FONSECA, L. S.; CORREIA, P. R. M. Abordagem neurocognitiva de processos atencionais envolvidos na aprendizagem mediada por mapas conceituais. Revista Brasileira de Ensino de Ciência e Tecnologia, Ponta Grossa, v. 13, n. 2, p. 247-268, 2020. DOI: 10.3895/rbect.v13n2.9421
WRIGHT, R.; THOMPSON, W. L.; GANIS, G.; NEWCOMBE, N. S.; KOSSLYN, S. M. Training generalized spatial skills, Psychonomic Bulletin & Review, v. 15, n. 4, p. 763-771, 2008.
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Direitos Autorais aos artigos da revista são do autor, com direitos de primeira publicação à revista. Devido ao fato de aparecerem neste periódico de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicações inicial nesta revista.
Alexandria: Revista de Educação em Ciência e Tecnologia. UFSC, Florianópolis, Santa Catarina, Brasil - - - ISSN 1982-5153 - - - esta obra foi licenciada com uma licença Creative Commons - Atribuição 4.0 Internacional - CC BY