Investigation-History-With-Technology for the Algebra and Geometry Unit in the 8th Year

Authors

DOI:

https://doi.org/10.5007/1981-1322.2021.e72811

Abstract

The History of Mathematics (HM), Digital Technologies of Information and Communication (TDIC) and Mathematical Investigation (IM), among others, are trends in mathematical education whose research has pointed to favorable arguments for use in the teaching-learning of mathematics. There i salso the possibility of uniting them for the sake of teaching and learning. In the case of basic education, it is recommended that the proposals be supported by oficial documents, among them the National Common Curricular Base (BNCC) which also recommends these trends and also their connection. Thus, in this article, we propose the aliance between HM, TDIC through IM through the appreciation of parto of an education product, to approach the thematic units of Numbers and Probability and Statistics by means of the knowledge object cartesian knowledge objects and geometric transformations such as symmetry, treated with a historical approach to characters, works and documents such as Nicole Oresme, Descartes´La Géométrie, the Pappus Problem, the rock painting of the Shelter of Rock El Buey, observation of enameded sphinxes of the palace of Darius in Susa, among others. For this, our research adopts a qualitative approach with an exploratory objective in order to introduce constructs that support the proposal and presente a specific example that caracterizes the aforomentioned aliance. As a result, we find the objects of common knowledge, the thematic units mentioned above can be approached in a historical-with-tecnology investigation through an education product, concluding that this proposal is an alternative approach mathematics in basic education towards the conjunction between HM, TDIC and IM.

Author Biographies

Giselle Costa de Sousa, UFRN

Doutora em Educação (linha Educação Matemática) pela UFRN. Professora do Departamento de Matemática, do PPGECNM e coordenadora do PIBID de Matemática da UFRN.

Alison Luan Ferreira da Silva, Secretaria Estadual de Educação e Cultura do Rio Grande do Norte

Licenciado em matemática e mestre em ensino de ciências naturais e matemática. Professor da educação básica.

References

Brasil. Ministério da Educação. (1997). Parâmetros Curriculares Nacionais – PCN. Versão final. Brasília, DF.

Brasil. Ministério da Educação. (2017). Base Nacional Comum Curricular – BNCC. Versão final. Brasília, DF, 466p.

Borba, Marcelo de Carvalho & Penteado, Miriam Godoy. (2012). Informática e Educação Matemática. 3. ed. 2. reimp. Belo Horizonte: Autêntica.

Carvalho, U. W. (1997). PIGEONHOLE: qual é o significado e a tradução? Tecla sap. Recuperado de http://www.teclasap.com.br/pigeonhole-qual-e-o-significado-e-traducao/. Acesso em: 02 nov. 2018.

Castel de Saint-Pierre, Charles irénée. (1737). Ouvrajes de morale et de politique, Rotterdam, J. Berman; et Paris, Briasson.

Hanzelet, J.A. (1624). Récréation mathematicque composee de plusieurs problemes plaisants et facetieux. Jean Appier Hanzelet Recuperado de https://books.google.fr/books?id=QsY5AAAAcAAJ&printsec=frontcover&hl=pt-BR&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false. Acesso em: 19 out. 2018.

Gil, Antonio Carlos. (2007). Como elaborar projetos de pesquisa. 4. ed. São Paulo: Atlas.

Hefez, A. (2007). Indução Matemática. Programa de Iniciação Científica da OBMEP, 2007. Rio de Janeiro: Sociedade Brasileira de Matemática.

Leurechon, J. (1622). SelectæPropositiones in Tota Sparsim Mathematica Pulcherrimæ. Gasparem Bernardum. Recuperado de https://www.e-rara.ch/doi/10.3931/e-rara-10537. Acesso em: 19 out. 2018.

Ludke, M & Andre, M.E.D.A. (2013). Pesquisa em educação: uma abordagem qualitativa. 2.ed. São Paulo: EpU.

Miguel, A. & Miorim, M. A. (2017). História na Educação Matemática: proposta e desafios. 2.ed. 1. Reimp. - Belo Horizonte: Autêntica Editora.

Pereira, A.S. et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 24 março 2020.

Ponte, J. P., Brocardo, J. & Oliveira, H. (2016). Investigações matemáticas na sala de aula. 3 ed. Ver. Ampl.- Belo Horizonte: Autêntica Editora.

Radford, L. (2020). Um percurso pela teoria da objetivação. Em S. Takeco Gobara e L. Radford (Eds.), Teoria da Objetivação: Fundamentos e aplicações para o ensino e aprendizagem de ciências e matemática (pp. 15-42). São Paulo, Brasil: Livraria da Física.

Saito, F. (2016). Construindo interfaces entre história e ensino de matemática. In: Ensino de Matemática em Debate, vol; 3, n. 1. Recuperado de https://revistas.pucsp.br/emd/article/view/29002/20273. Acesso em: 03 abr. 2020.

Silva, Alison Luan Ferreira da. (2019). História da matemática, tecnologias digitais e investigação matemática no ensino de unidades temáticas de matemática da BNCC para o 8º ano. 247f. Dissertação (Mestrado em Ensino de Ciências Naturais e Matemática), Universidade Federal do Rio Grande do Norte, Natal.

Published

2021-03-09

Issue

Section

Artigos