Pesquisa e aplicação em crowdsensing para cidades inteligentes: o caso ParticipAct

Autores

DOI:

https://doi.org/10.5007/2175-8077.2025.e103258

Palavras-chave:

Cidades Inteligentes, crowdsensing, aplicativos, ParticipAct Project

Resumo

Contexto: As iniciativas que envolvem tecnologia e inovação avançam a cada dia. Nesse contexto, as cidades inteligentes vêm se beneficiando do uso de mobile crowdsensing em seus gadgets, tais como tablets e smartphones. Tal tecnologia permite o compartilhamento de dados de forma ativa por indivíduos, com intuito do bem comum como sociedade.

Objetivo: Este estudo objetiva apresentar o caso do projeto acadêmico e aplicativo ParticipAct, surgido na Itália e posteriormente ampliado para o Brasil, bem como mapear os estudos que citam e trabalham com o mesmo. Ainda, apresenta uma agenda de pesquisa no tema, de modo a apoiar novos estudos no campo.

Método: Como método, adotou-se uma revisão sistemática de literatura com base no Modelo Prisma, com busca na base de dados do Google Acadêmico e Periódicos Capes. A busca considerou artigos em língua inglesa e portuguesa publicados nos últimos doze anos (2013-2024), utilizando como filtros as palavras “participact” e “smart cities”. Baseado na pesquisa, identificou-se 295 artigos, que foram filtrados para maior aderência aos objetivos do estudo, sendo reduzidos a 34 publicações em periódicos.

Resultados: Os achados da pesquisa oferecem aportes para pesquisadores do campo e gestores públicos que buscam conhecimentos acerca de cidades inteligentes para aplicação prática.

Biografia do Autor

Ana Paula Kieling, Universidade do Estado de Santa Catarina

Pesquisadora de Pós-Doutorado em Administração na Universidade do Estado de Santa Catarina

Professora de Marketing e Consumo nos cursos de Pós-Graduação da USP, UNIVALI e UNOESC

Endereço: Av. Madre Benvenuta, 2037 Itacorubí, Florianópolis / SC, Brasil CEP: 88.035-001

Monique Aparecida Zanquet, Universidade do Estado de Santa Catarina

Pesquisadora e discente da Pós-Graduação do Doutorado Acadêmico em Administração

Temas de pesquisa: Tecnologias de gestão, Comportamento do consumidor, Pesquisa quantitativa aplicada à gestão

Endereço: Av. Madre Benvenuta, 2037 Itacorubí, Florianópolis / SC, Brasil CEP: 88.035-001

Rafael Tezza, Universidade do Estado de Santa Catarina

Professor Titular do Departamento de Administração Empresarial

Temas de pesquisa: Smart Cities, Big Data, E-commerce, Estatística Multivariada aplicada à gestão, Teoria da Resposta ao Item

Endereço: Av. Madre Benvenuta, 2037 Itacorubí, Florianópolis / SC, Brasil CEP: 88.035-001

Pedro Hochsteiner, Universidade do Estado de Santa Catarina

Pesquisador e discente do curso de Mestrado em Administração na Escola Superior de Administração e Gerência - ESAG
Endereço: Av. Madre Benvenuta, 2037 Itacorubí, Florianópolis / SC, Brasil CEP: 88.035-001

Referências

Al Jawarneh, I. M., Foschini, L., & Paolo Bellavista. (2023). Efficient Integration of Heterogeneous Mobility-Pollution Big Data for Joint Analytics at Scale with QoS Guarantees. Future Internet, 15(8), 263–263. https://doi.org/10.3390/fi15080263

Alsabt, R., Adenle, Y. A., & Alshuwaikhat, H. M. (2024). Exploring the Roles, Future Impacts, and Strategic Integration of Artificial Intelligence in the Optimization of Smart City—From Systematic Literature Review to Conceptual Model. Sustainability, 16(8), 3389–3389. https://doi.org/10.3390/su16083389

Arya, D & Maeda, H & Sekimoto, Y. (2024). From global challenges to local solutions: A review of cross-country collaborations and winning strategies in road damage detection. Advanced Engineering Informatics. 60. 102388. https://doi.org/10.1016/j.aei.2024.102388

Bárcia, L. C., de Oliveira, C. T. F., & Gouveia, T. A. (2024). Destinos turísticos inteligentes: uma análise da governança turística de Búzios. Diálogo com a Economia Criativa, 9(25). https://doi.org/10.22398/2525-2828.925151-167

Bastos, D., Fernández-Caballero, A., Pereira, A., & Rocha, N. P. (2022). Smart City Applications to Promote Citizen Participation in City Management and Governance: A Systematic Review. Informatics, 9(4), 89. https://doi.org/10.3390/informatics9040089

Bellavista, P., Corradi, A., Foschini, L., & Ianniello, R. (2015). Scalable and Cost-Effective Assignment of Mobile Crowdsensing Tasks Based on Profiling Trends and Prediction: The ParticipAct Living Lab Experience. Sensors, 15(8), 18613–18640. https://doi.org/10.3390/s150818613

Bellavista, P., Chessa, S., Foschini, L., Gioia, L., & Girolami, M. (2018). Human-enabled edge computing: Exploiting the crowd as a dynamic extension of mobile edge computing. IEEE Communications Magazine, 56(1), 145-155. https://doi.org/10.1109/MCOM.2017.1700385

Bellavista, P., Belli, D., Chessa, S., & Foschini, L. (2019). A Social-Driven Edge Computing Architecture for Mobile Crowd Sensing Management. IEEE Communications Magazine, 57(4), 68–73. https://doi.org/10.1109/mcom.2019.1800637

Bellavista, P., Corradi, A., Foschini, L., Gomes, E. H., Lamberti, E., Klein, G., ... & Torello, M. (2020). Virtual environments as enablers of civic awareness and engagement. International Journal of Urban Planning and Smart Cities (IJUPSC), 1(1), 22-34. https://doi.org/10.4018/IJUPSC.2020010102

Bellavista, P., Torello, M., Corradi, A., & Foschini, L. (2021). Smart Management of Healthcare Professionals Involved in COVID-19 Contrast With SWAPS. Frontiers in Sustainable Cities, 3. https://doi.org/10.3389/frsc.2021.638743

Belli, D., Chessa, S., Corradi, A., Foschini, L., & Girolami, M. (2020). Optimization strategies for the selection of mobile edges in hybrid crowdsensing architectures. Computer Communications, 157, 132–142. https://doi.org/10.1016/j.comcom.2020.04.006

Belli, D., Chessa, S., Foschini, L., & Girolami, M. (2020). The rhythm of the crowd: Properties of evolutionary community detection algorithms for mobile edge selection. Pervasive and Mobile Computing, 67, 101231. https://doi.org/10.1016/j.pmcj.2020.101231

Benita, F., Virupaksha, D., Wilhelm, E., & Tunçer, B. (2021). A smart learning ecosystem design for delivering Data-driven Thinking in STEM education. Smart Learning Environments, 8(1). https://doi.org/10.1186/s40561-021-00153-y

Cardone, G., Foschini, L., Bellavista, P., Corradi, A., Borcea, C., Talasila, M., & Curtmola, R. (2013). Fostering participaction in smart cities: a geo-social crowdsensing platform. IEEE Communications Magazine, 51(6), 112–119. https://doi.org/10.1109/mcom.2013.6525603

Cardone, G., Cirri, A., Corradi, A., & Foschini, L. (2014). The participact mobile crowd sensing living lab: The testbed for smart cities. IEEE Communications Magazine, 52(10), 78–85. https://doi.org/10.1109/mcom.2014.6917406

Cardone, G., Corradi, A., Foschini, L., & Ianniello, R. (2016). ParticipAct: A large-scale crowdsensing platform. IEEE Transactions on Emerging Topics in Computing, 4(1), 21–32. https://doi.org/10.1109/TETC.2015.2433835

Cecilia, J. M., Cano, J. C., Hernández-Orallo, C., Calafate, T., & Manzoni, P. (2020). Mobile crowdsensing approaches to address the COVID-19 pandemic in Spain. IET Smart Cities, 2(2), 58-63. https://doi.org/10.1049/iet-smc.2020.0037

Chessa, S., Corradi, A., Foschini, L., & Girolami, M. (2016). Empowering mobile crowdsensing through social and ad hoc networking. IEEE Communications Magazine, 54(7), 108-114. https://doi.org/10.1109/MCOM.2016.7509387

Chessa, S., Girolami, M., Foschini, L., Ianniello, R., Corradi, A., & Bellavista, P. (2017). Mobile crowd sensing management with the ParticipAct living lab. Pervasive and Mobile Computing, 38, 200–214. https://doi.org/10.1016/j.pmcj.2016.09.005

Cortellazzi, R., Foschini, L., De Rolt Corradi, A., Neto, C. A. A., & Alperstedt, G. (2016). Crowdsensing and proximity services for impaired mobility. In 2016 IEEE Symposium on Computers and Communication (ISCC) (pp. 44-49). Messina, Italy. https://doi.org/10.1109/ISCC.2016.7543712

Darolt, D. L., Rolt, C. R. D., & Sabbioni, A. (2020). Machine Learning to Estimate the Floating Population in Florianopolis. International Journal of Computer Applications, 175(27), 1–6. https://doi.org/10.5120/ijca2020920812

De Almeida Buosi, M., Cilloni, M., Corradi, A., De Rolt, C. R., da Silva Dias, J., Foschini, L., ... & Zito, P. (2018). A crowdsensing campaign and data analytics for assisting urban mobility pattern determination. In 2018 IEEE Symposium on Computers and Communications (ISCC) (pp. 224–229). IEEE. https://doi.org/10.1109/ISCC.2018.8538483

De Camargo Barros, A., & Botelho Mager, G. (2023). Informações da qualidade do ambiente nas rotas dos aplicativos de navegação digital para pedestres: estudo de caso em Florianópolis. Design E Tecnologia, 13(26), 62–79. https://doi.org/10.23972/det2023iss26pp62-79

De Rolt, C. R., Dias, J. D. S., Gomes, E. H. A., & Buosi, M. (2021). Crowdsensing campaigns management in smart cities. International Journal of Grid and Utility Computing, 12(2), 192. https://doi.org/10.1504/ijguc.2021.114818

Fatecha Burian, M., Fauvety, P., Aquino, N., Magalí González, Romero, D., Luca Cernuzzi, Paniagua, J., & Chenú-Abente, R. (2020). Design of SmartMoving, an Application for Pedestrians with Reduced Mobility. https://doi.org/10.1109/clei52000.2020.00049

Foschini, L., & Girolami, M. (2017). Human-enabled edge computing: When mobile crowd-sensing meets mobile edge computing. MMTC Communications-Frontiers. https://doi.org/10.1109/MCOM.2017.1700385

Foschini, L., Martuscelli, G., Montanari, R., et al. (2021). Edge-enabled mobile crowdsensing to support effective rewarding for data collection in pandemic events. Journal of Grid Computing, 19, Article 28. https://doi.org/10.1007/s10723-021-09569-9

Girolami, M., Chessa, S., Foschini, L., Ianiello, R., & Corradi, A. (2015). Social amplification factor for mobile crowd sensing: The ParticipAct experience. 2015 IEEE Symposium on Computers and Communication (ISCC). https://doi.org/10.1109/ISCC.2015.7405544

Girolami, M., Belli, D., Chessa, S., & Foschini, L. (2021). How mobility and sociality reshape the context: A decade of experience in mobile crowdsensing. Sensors, 21(19), 6397. https://doi.org/10.3390/s21196397

Girolami, M., Vitello, P., Capponi, A., Fiandrino, C., Foschini, L., & Bellavista, P. (2022). A mobility-based deployment strategy for edge data centers. Journal of Parallel and Distributed Computing, 164, 133–141. https://doi.org/10.1016/j.jpdc.2022.03.007

Gokulraj, P., & Dhivakar, B. (2019). Smart device based security, user privacy protection and allocating task to motivate crowd sensing networks. South Asian Journal of Engineering and Technology, 8(1), 122-126. https://sajet.in/index.php/journal/article/view/38

Gomes, E., Dantas, M. A. R. D., de Macedo, D. D. J., De Rolt, C., Brocardo, M. L., & Foschini, L. (2016). Towards an infrastructure to support big data for a smart city project. In 2016 IEEE 25th International Conference on Enabling Technologies: Infrastructure for Collaborative

Enterprises (WETICE) (pp. 107–112). IEEE. https://doi.org/10.1109/WETICE.2016.31

Gomes, E. H. A., Foschini, L., Dias, J., Dantas, M. A. R., De Rolt, C. R., & De Macedo, D. D. J. (2018). An infrastructure model for smart cities based on big data. International Journal of Grid and Utility Computing, 9(4), 322. https://doi.org/10.1504/ijguc.2018.10016122

Gomes, E. H. A., Plentz, P. D. M., Rolt, C. R. D., & Dantas, M. A. R. (2019). A survey on data stream, big data and real-time. International Journal of Networking and Virtual Organisations, 20(2), 143. https://doi.org/10.1504/ijnvo.2019.097631

Gottardi, L., & Cristina, A. (2024). Índice De Pobreza Multidimensional: Um Indicador Para Cidades Inteligentes. Hygeia - Revista Brasileira de Geografia Médica E Da Saúde, 20, 2026. https://doi.org/10.14393/hygeia2069587

Gracias, J. S., Parnell, G. S., Specking, E., Pohl, E. A., & Buchanan, R. (2023). Smart Cities—A Structured Literature Review. Smart Cities, 6(4), 1719–1743. https://doi.org/10.3390/smartcities6040080

Jia, B., Zhou, T., Li, W., Liu, Z., & Zhang, J. (2018). A Blockchain-Based Location Privacy Protection Incentive Mechanism in Crowd Sensing Networks. Sensors, 18(11), 3894. https://doi.org/10.3390/s18113894

Jiang, H., Geertman, S., & Witte, P. (2022). The contextualization of smart city technologies: An international comparison. Journal of Urban Management. https://doi.org/10.1016/j.jum.2022.09.001

Joo, Y.-M. (2021). Developmentalist smart cities? the cases of Singapore and Seoul. International Journal of Urban Sciences, 1–19. https://doi.org/10.1080/12265934.2021.1925143

Liu, Y., Kong, L., & Chen, G. (2019). Data-Oriented Mobile Crowdsensing: A Comprehensive Survey. IEEE Communications Surveys & Tutorials, 21(3), 2849–2885. https://doi.org/10.1109/comst.2019.2910855

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2015). Principais itens para relatar revisões sistemáticas e meta-análises: A recomendação PRISMA. Epidemiologia e Serviços de Saúde, 24(2), 355-342. https://doi.org/10.5123/S1679-49742015000200017

Miranda, R., Alves, C., Sousa, R., Chaves, A., Montenegro, L., Peixoto, H., Durães, D., Machado, R., Abelha, A., & Novais, P. (2024). Revolutionising the quality of life: The role of real-time sensing in smart cities. Electronics, 13(3), 550. https://doi.org/10.3390/electronics13030550

Myeong, S., Park, J., & Lee, M. (2022). Research models and methodologies on the smart city: A systematic literature review. Sustainability, 14(3), Article 1687. https://doi.org/10.3390/su14031687

Ogie, R. (2016). Adopting incentive mechanisms for large-scale participation in mobile crowdsensing: From literature review to a conceptual framework. Human-Centric Computing and Information Sciences, 6, Article 10. https://doi.org/10.1186/s13673-016-0080-3

Owoh, N. P., Mahinderjit Singh, M., & Zaaba, Z. (2018). Automatic Annotation of Unlabeled Data from Smartphone-Based Motion and Location Sensors. Sensors, 18(7), 2134. https://doi.org/10.3390/s18072134

Peng, X., Heng, X., Li, Q., Li, J., & Yu, K. (2022). From sponge cities to sponge watersheds: Enhancing flood resilience in the Sishui River Basin in Zhengzhou, China. Water, 14(19), Article 3084. https://doi.org/10.3390/w14193084

Putra, Z. D. W., & van der Knaap, W. (2018). Urban innovation system and the role of an open web-based platform: The case of Amsterdam Smart City. Journal Riset Kebijakan, 29, 234–249. https://doi.org/10.5614/jrcp.2018.29.3.4.

Ribeiro, F. R., Silva, A., & Barbosa, F. (2018). Mobile applications for accessible tourism: Overview, challenges and a proposed platform. Information Technology & Tourism, 19, 29-59. https://doi.org/10.1007/s40558-018-0110-2

Rizzo, G., Liu, Z., Sokhn, M., Bocchi, Y., & Jara, A. (2018). When smart comes to town: A mobile platform for smart district services. In 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC),1–2. IEEE. https://doi.org/10.1109/CCNC.2018.8319316

Soares, A. P. G., De Rolt, C. R., & Da Silva, R. B. (2024). Requisitos básicos de um sistema para colaboração no estudo de problemas urbanos. Contribuciones a las Ciencias Sociales, 17(3), 5606. https://doi.org/10.55905/revconv.17n.3-028

Sha, K., Taeihagh, A., & Jong, W. M. (2024). Governing disruptive technologies for inclusive development in cities: A systematic literature review. Technological Forecasting and Social Change, 203, Article 123382. https://doi.org/10.1016/j.techfore.2024.123382

Sharifi, A., Allam, Z., & Khavarian-Garmsir, A. R. (2024). Smart cities and sustainable development goals (SDGs): A systematic literature review of co-benefits and trade-offs. Cities, 146, Article 104659. https://doi.org/10.1016/j.cities.2023.104659

Smith, H., Medero, G. M., Crane De Narváez, S., et al. (2023). Exploring the relevance of ‘smart city’ approaches to low-income communities in Medellín, Colombia. GeoJournal, 88, 17–38. https://doi.org/10.1007/s10708-022-10574-y

Tezza, R., Hochsteiner, P., & Kieling, A. P. (2024). ANÁLISE DE INDICADORES PARA CIDADES INTELIGENTES: uma revisão sistemática e proposta de agenda de pesquisa. P2P E INOVAÇÃO, 10(2), e-6879. https://doi.org/10.21728/p2p.2024v10n2e-6879

Ulya, A., Susanto, T. D., Dharmawan, Y. S., & Subriadi, A. P. (2024). Major dimensions of smart city: A systematic literature review. Procedia Computer Science, 234, 996–1003. https://doi.org/10.1016/j.procs.2024.03.089

Wang, J., Wang, F., Wang, Y., Zhang, D., Wang, L., & Qiu, Z. (2018). Social-network-assisted worker recruitment in mobile crowd sensing. IEEE Transactions on Mobile Computing, 18(7), 1661-1673. https://doi.org/10.1109/TMC.2018.2865355

Xie, J., Tang, H., Huang, T., Yu, F. R., Xie, R., Liu, J., & Liu, Y. (2019). A Survey of Blockchain Technology Applied to Smart Cities: Research Issues and Challenges. IEEE Communications Surveys & Tutorials, 21(3), 2794–2830. https://doi.org/10.1109/comst.2019.2899617

Zambonelli, F., Omicini, A., & Scerri, P. (2016). Coordination in Large-Scale Socio-Technical Systems: Introduction to the Special Section. IEEE Transactions on Emerging Tops in Computing, 4(1), 5–8. https://doi.org/10.1109/tetc.2015.2505498

Zeng, F., Pang, C., & Tang, H. (2024). Sensors on Internet of Things systems for the sustainable development of smart cities: A systematic literature review. Sensors, 24(7), Article 2074. https://doi.org/10.3390/s24072074

Downloads

Publicado

31-12-2025

Como Citar

Kieling, A. P., Zanquet, M. A., Tezza, R., & Hochsteiner, P. (2025). Pesquisa e aplicação em crowdsensing para cidades inteligentes: o caso ParticipAct. Revista De Ciências Da Administração, 2(Especial), 1–19. https://doi.org/10.5007/2175-8077.2025.e103258

Artigos Semelhantes

1 2 3 4 5 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.