Research and application in crowdsensing for smart cities: the ParticipAct case
DOI:
https://doi.org/10.5007/2175-8077.2025.e103258Keywords:
Smart Cities, crowdsensing, applications, ParticipAct ProjectAbstract
Context: Initiatives involving technology and innovation are advancing every day. In this context, smart cities have been benefiting from the use of mobile crowdsensing in their gadgets, such as tablets and smartphones. This technology allows for the active sharing of data by individuals, with the aim of the common good as a society.
Objective: This study aims to present the case of the academic project and application ParticipAct, which originated in Italy and was later expanded to Brazil, as well as to map studies that cite and work with it. Additionally, it presents a research agenda on the topic, in order to support new studies in the field.
Method: As a method, a systematic literature review based on the PRISMA Model was adopted, with searches in the Google Scholar and Periódicos Capes databases. The search considered articles in English and Portuguese published in the last twelve years (2013-2024), using the words "participact" and "smart cities" as filters. Based on the research, 295 articles were identified, which were filtered for greater adherence to the study's objectives, being reduced to 34 publications in academic journals.
Results: The findings of the research offer contributions to researchers in the field and public managers seeking knowledge about smart cities for practical application.
References
Al Jawarneh, I. M., Foschini, L., & Paolo Bellavista. (2023). Efficient Integration of Heterogeneous Mobility-Pollution Big Data for Joint Analytics at Scale with QoS Guarantees. Future Internet, 15(8), 263–263. https://doi.org/10.3390/fi15080263
Alsabt, R., Adenle, Y. A., & Alshuwaikhat, H. M. (2024). Exploring the Roles, Future Impacts, and Strategic Integration of Artificial Intelligence in the Optimization of Smart City—From Systematic Literature Review to Conceptual Model. Sustainability, 16(8), 3389–3389. https://doi.org/10.3390/su16083389
Arya, D & Maeda, H & Sekimoto, Y. (2024). From global challenges to local solutions: A review of cross-country collaborations and winning strategies in road damage detection. Advanced Engineering Informatics. 60. 102388. https://doi.org/10.1016/j.aei.2024.102388
Bárcia, L. C., de Oliveira, C. T. F., & Gouveia, T. A. (2024). Destinos turísticos inteligentes: uma análise da governança turística de Búzios. Diálogo com a Economia Criativa, 9(25). https://doi.org/10.22398/2525-2828.925151-167
Bastos, D., Fernández-Caballero, A., Pereira, A., & Rocha, N. P. (2022). Smart City Applications to Promote Citizen Participation in City Management and Governance: A Systematic Review. Informatics, 9(4), 89. https://doi.org/10.3390/informatics9040089
Bellavista, P., Corradi, A., Foschini, L., & Ianniello, R. (2015). Scalable and Cost-Effective Assignment of Mobile Crowdsensing Tasks Based on Profiling Trends and Prediction: The ParticipAct Living Lab Experience. Sensors, 15(8), 18613–18640. https://doi.org/10.3390/s150818613
Bellavista, P., Chessa, S., Foschini, L., Gioia, L., & Girolami, M. (2018). Human-enabled edge computing: Exploiting the crowd as a dynamic extension of mobile edge computing. IEEE Communications Magazine, 56(1), 145-155. https://doi.org/10.1109/MCOM.2017.1700385
Bellavista, P., Belli, D., Chessa, S., & Foschini, L. (2019). A Social-Driven Edge Computing Architecture for Mobile Crowd Sensing Management. IEEE Communications Magazine, 57(4), 68–73. https://doi.org/10.1109/mcom.2019.1800637
Bellavista, P., Corradi, A., Foschini, L., Gomes, E. H., Lamberti, E., Klein, G., ... & Torello, M. (2020). Virtual environments as enablers of civic awareness and engagement. International Journal of Urban Planning and Smart Cities (IJUPSC), 1(1), 22-34. https://doi.org/10.4018/IJUPSC.2020010102
Bellavista, P., Torello, M., Corradi, A., & Foschini, L. (2021). Smart Management of Healthcare Professionals Involved in COVID-19 Contrast With SWAPS. Frontiers in Sustainable Cities, 3. https://doi.org/10.3389/frsc.2021.638743
Belli, D., Chessa, S., Corradi, A., Foschini, L., & Girolami, M. (2020). Optimization strategies for the selection of mobile edges in hybrid crowdsensing architectures. Computer Communications, 157, 132–142. https://doi.org/10.1016/j.comcom.2020.04.006
Belli, D., Chessa, S., Foschini, L., & Girolami, M. (2020). The rhythm of the crowd: Properties of evolutionary community detection algorithms for mobile edge selection. Pervasive and Mobile Computing, 67, 101231. https://doi.org/10.1016/j.pmcj.2020.101231
Benita, F., Virupaksha, D., Wilhelm, E., & Tunçer, B. (2021). A smart learning ecosystem design for delivering Data-driven Thinking in STEM education. Smart Learning Environments, 8(1). https://doi.org/10.1186/s40561-021-00153-y
Cardone, G., Foschini, L., Bellavista, P., Corradi, A., Borcea, C., Talasila, M., & Curtmola, R. (2013). Fostering participaction in smart cities: a geo-social crowdsensing platform. IEEE Communications Magazine, 51(6), 112–119. https://doi.org/10.1109/mcom.2013.6525603
Cardone, G., Cirri, A., Corradi, A., & Foschini, L. (2014). The participact mobile crowd sensing living lab: The testbed for smart cities. IEEE Communications Magazine, 52(10), 78–85. https://doi.org/10.1109/mcom.2014.6917406
Cardone, G., Corradi, A., Foschini, L., & Ianniello, R. (2016). ParticipAct: A large-scale crowdsensing platform. IEEE Transactions on Emerging Topics in Computing, 4(1), 21–32. https://doi.org/10.1109/TETC.2015.2433835
Cecilia, J. M., Cano, J. C., Hernández-Orallo, C., Calafate, T., & Manzoni, P. (2020). Mobile crowdsensing approaches to address the COVID-19 pandemic in Spain. IET Smart Cities, 2(2), 58-63. https://doi.org/10.1049/iet-smc.2020.0037
Chessa, S., Corradi, A., Foschini, L., & Girolami, M. (2016). Empowering mobile crowdsensing through social and ad hoc networking. IEEE Communications Magazine, 54(7), 108-114. https://doi.org/10.1109/MCOM.2016.7509387
Chessa, S., Girolami, M., Foschini, L., Ianniello, R., Corradi, A., & Bellavista, P. (2017). Mobile crowd sensing management with the ParticipAct living lab. Pervasive and Mobile Computing, 38, 200–214. https://doi.org/10.1016/j.pmcj.2016.09.005
Cortellazzi, R., Foschini, L., De Rolt Corradi, A., Neto, C. A. A., & Alperstedt, G. (2016). Crowdsensing and proximity services for impaired mobility. In 2016 IEEE Symposium on Computers and Communication (ISCC) (pp. 44-49). Messina, Italy. https://doi.org/10.1109/ISCC.2016.7543712
Darolt, D. L., Rolt, C. R. D., & Sabbioni, A. (2020). Machine Learning to Estimate the Floating Population in Florianopolis. International Journal of Computer Applications, 175(27), 1–6. https://doi.org/10.5120/ijca2020920812
De Almeida Buosi, M., Cilloni, M., Corradi, A., De Rolt, C. R., da Silva Dias, J., Foschini, L., ... & Zito, P. (2018). A crowdsensing campaign and data analytics for assisting urban mobility pattern determination. In 2018 IEEE Symposium on Computers and Communications (ISCC) (pp. 224–229). IEEE. https://doi.org/10.1109/ISCC.2018.8538483
De Camargo Barros, A., & Botelho Mager, G. (2023). Informações da qualidade do ambiente nas rotas dos aplicativos de navegação digital para pedestres: estudo de caso em Florianópolis. Design E Tecnologia, 13(26), 62–79. https://doi.org/10.23972/det2023iss26pp62-79
De Rolt, C. R., Dias, J. D. S., Gomes, E. H. A., & Buosi, M. (2021). Crowdsensing campaigns management in smart cities. International Journal of Grid and Utility Computing, 12(2), 192. https://doi.org/10.1504/ijguc.2021.114818
Fatecha Burian, M., Fauvety, P., Aquino, N., Magalí González, Romero, D., Luca Cernuzzi, Paniagua, J., & Chenú-Abente, R. (2020). Design of SmartMoving, an Application for Pedestrians with Reduced Mobility. https://doi.org/10.1109/clei52000.2020.00049
Foschini, L., & Girolami, M. (2017). Human-enabled edge computing: When mobile crowd-sensing meets mobile edge computing. MMTC Communications-Frontiers. https://doi.org/10.1109/MCOM.2017.1700385
Foschini, L., Martuscelli, G., Montanari, R., et al. (2021). Edge-enabled mobile crowdsensing to support effective rewarding for data collection in pandemic events. Journal of Grid Computing, 19, Article 28. https://doi.org/10.1007/s10723-021-09569-9
Girolami, M., Chessa, S., Foschini, L., Ianiello, R., & Corradi, A. (2015). Social amplification factor for mobile crowd sensing: The ParticipAct experience. 2015 IEEE Symposium on Computers and Communication (ISCC). https://doi.org/10.1109/ISCC.2015.7405544
Girolami, M., Belli, D., Chessa, S., & Foschini, L. (2021). How mobility and sociality reshape the context: A decade of experience in mobile crowdsensing. Sensors, 21(19), 6397. https://doi.org/10.3390/s21196397
Girolami, M., Vitello, P., Capponi, A., Fiandrino, C., Foschini, L., & Bellavista, P. (2022). A mobility-based deployment strategy for edge data centers. Journal of Parallel and Distributed Computing, 164, 133–141. https://doi.org/10.1016/j.jpdc.2022.03.007
Gokulraj, P., & Dhivakar, B. (2019). Smart device based security, user privacy protection and allocating task to motivate crowd sensing networks. South Asian Journal of Engineering and Technology, 8(1), 122-126. https://sajet.in/index.php/journal/article/view/38
Gomes, E., Dantas, M. A. R. D., de Macedo, D. D. J., De Rolt, C., Brocardo, M. L., & Foschini, L. (2016). Towards an infrastructure to support big data for a smart city project. In 2016 IEEE 25th International Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE) (pp. 107–112). IEEE. https://doi.org/10.1109/WETICE.2016.31
Gomes, E. H. A., Foschini, L., Dias, J., Dantas, M. A. R., De Rolt, C. R., & De Macedo, D. D. J. (2018). An infrastructure model for smart cities based on big data. International Journal of Grid and Utility Computing, 9(4), 322. https://doi.org/10.1504/ijguc.2018.10016122
Gomes, E. H. A., Plentz, P. D. M., Rolt, C. R. D., & Dantas, M. A. R. (2019). A survey on data stream, big data and real-time. International Journal of Networking and Virtual Organisations, 20(2), 143. https://doi.org/10.1504/ijnvo.2019.097631
Gottardi, L., & Cristina, A. (2024). Índice De Pobreza Multidimensional: Um Indicador Para Cidades Inteligentes. Hygeia - Revista Brasileira de Geografia Médica E Da Saúde, 20, 2026. https://doi.org/10.14393/hygeia2069587
Gracias, J. S., Parnell, G. S., Specking, E., Pohl, E. A., & Buchanan, R. (2023). Smart Cities—A Structured Literature Review. Smart Cities, 6(4), 1719–1743. https://doi.org/10.3390/smartcities6040080
Jia, B., Zhou, T., Li, W., Liu, Z., & Zhang, J. (2018). A Blockchain-Based Location Privacy Protection Incentive Mechanism in Crowd Sensing Networks. Sensors, 18(11), 3894. https://doi.org/10.3390/s18113894
Jiang, H., Geertman, S., & Witte, P. (2022). The contextualization of smart city technologies: An international comparison. Journal of Urban Management. https://doi.org/10.1016/j.jum.2022.09.001
Joo, Y.-M. (2021). Developmentalist smart cities? the cases of Singapore and Seoul. International Journal of Urban Sciences, 1–19. https://doi.org/10.1080/12265934.2021.1925143
Liu, Y., Kong, L., & Chen, G. (2019). Data-Oriented Mobile Crowdsensing: A Comprehensive Survey. IEEE Communications Surveys & Tutorials, 21(3), 2849–2885. https://doi.org/10.1109/comst.2019.2910855
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2015). Principais itens para relatar revisões sistemáticas e meta-análises: A recomendação PRISMA. Epidemiologia e Serviços de Saúde, 24(2), 355-342. https://doi.org/10.5123/S1679-49742015000200017
Miranda, R., Alves, C., Sousa, R., Chaves, A., Montenegro, L., Peixoto, H., Durães, D., Machado, R., Abelha, A., & Novais, P. (2024). Revolutionising the quality of life: The role of real-time sensing in smart cities. Electronics, 13(3), 550. https://doi.org/10.3390/electronics13030550
Myeong, S., Park, J., & Lee, M. (2022). Research models and methodologies on the smart city: A systematic literature review. Sustainability, 14(3), Article 1687. https://doi.org/10.3390/su14031687
Ogie, R. (2016). Adopting incentive mechanisms for large-scale participation in mobile crowdsensing: From literature review to a conceptual framework. Human-Centric Computing and Information Sciences, 6, Article 10. https://doi.org/10.1186/s13673-016-0080-3
Owoh, N. P., Mahinderjit Singh, M., & Zaaba, Z. (2018). Automatic Annotation of Unlabeled Data from Smartphone-Based Motion and Location Sensors. Sensors, 18(7), 2134. https://doi.org/10.3390/s18072134
Peng, X., Heng, X., Li, Q., Li, J., & Yu, K. (2022). From sponge cities to sponge watersheds: Enhancing flood resilience in the Sishui River Basin in Zhengzhou, China. Water, 14(19), Article 3084. https://doi.org/10.3390/w14193084
Putra, Z. D. W., & van der Knaap, W. (2018). Urban innovation system and the role of an open web-based platform: The case of Amsterdam Smart City. Journal Riset Kebijakan, 29, 234–249. https://doi.org/10.5614/jrcp.2018.29.3.4.
Ribeiro, F. R., Silva, A., & Barbosa, F. (2018). Mobile applications for accessible tourism: Overview, challenges and a proposed platform. Information Technology & Tourism, 19, 29-59. https://doi.org/10.1007/s40558-018-0110-2
Rizzo, G., Liu, Z., Sokhn, M., Bocchi, Y., & Jara, A. (2018). When smart comes to town: A mobile platform for smart district services. In 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC),1–2. IEEE. https://doi.org/10.1109/CCNC.2018.8319316
Soares, A. P. G., De Rolt, C. R., & Da Silva, R. B. (2024). Requisitos básicos de um sistema para colaboração no estudo de problemas urbanos. Contribuciones a las Ciencias Sociales, 17(3), 5606. https://doi.org/10.55905/revconv.17n.3-028
Sha, K., Taeihagh, A., & Jong, W. M. (2024). Governing disruptive technologies for inclusive development in cities: A systematic literature review. Technological Forecasting and Social Change, 203, Article 123382. https://doi.org/10.1016/j.techfore.2024.123382
Sharifi, A., Allam, Z., & Khavarian-Garmsir, A. R. (2024). Smart cities and sustainable development goals (SDGs): A systematic literature review of co-benefits and trade-offs. Cities, 146, Article 104659. https://doi.org/10.1016/j.cities.2023.104659
Smith, H., Medero, G. M., Crane De Narváez, S., et al. (2023). Exploring the relevance of ‘smart city’ approaches to low-income communities in Medellín, Colombia. GeoJournal, 88, 17–38. https://doi.org/10.1007/s10708-022-10574-y
Tezza, R., Hochsteiner, P., & Kieling, A. P. (2024). ANÁLISE DE INDICADORES PARA CIDADES INTELIGENTES: uma revisão sistemática e proposta de agenda de pesquisa. P2P E INOVAÇÃO, 10(2), e-6879. https://doi.org/10.21728/p2p.2024v10n2e-6879
Ulya, A., Susanto, T. D., Dharmawan, Y. S., & Subriadi, A. P. (2024). Major dimensions of smart city: A systematic literature review. Procedia Computer Science, 234, 996–1003. https://doi.org/10.1016/j.procs.2024.03.089
Wang, J., Wang, F., Wang, Y., Zhang, D., Wang, L., & Qiu, Z. (2018). Social-network-assisted worker recruitment in mobile crowd sensing. IEEE Transactions on Mobile Computing, 18(7), 1661-1673. https://doi.org/10.1109/TMC.2018.2865355
Xie, J., Tang, H., Huang, T., Yu, F. R., Xie, R., Liu, J., & Liu, Y. (2019). A Survey of Blockchain Technology Applied to Smart Cities: Research Issues and Challenges. IEEE Communications Surveys & Tutorials, 21(3), 2794–2830. https://doi.org/10.1109/comst.2019.2899617
Zambonelli, F., Omicini, A., & Scerri, P. (2016). Coordination in Large-Scale Socio-Technical Systems: Introduction to the Special Section. IEEE Transactions on Emerging Tops in Computing, 4(1), 5–8. https://doi.org/10.1109/tetc.2015.2505498
Zeng, F., Pang, C., & Tang, H. (2024). Sensors on Internet of Things systems for the sustainable development of smart cities: A systematic literature review. Sensors, 24(7), Article 2074. https://doi.org/10.3390/s24072074
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Ana Paula Kieling, Monique Aparecida Zanquet, Rafael Tezza, Pedro Hochsteiner

This work is licensed under a Creative Commons Attribution 4.0 International License.
The author must ensure:
- that there is complete consensus among all co-authors to approve the final version of the paper and its submission for publication.
- that their work is original, and if the work and/or words of others have been used, these have been duly acknowledged.
Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. RCA reserves the right to use software or any other methods of plagiarism detection.
All submissions received for evaluation in the RCA journal are screened for plagiarism and self-plagiarism. Plagiarism identified in manuscripts during the evaluation process will result in the submission being archived. In the event of plagiarism being identified in a manuscript published in the journal, the Editor-in-Chief will conduct a preliminary investigation and, if necessary, retract it.
Authors grant RCA exclusive rights of first publication, with the work simultaneously licensed under the Creative Commons (CC BY) 4.0 International License.

Authors are authorized to enter into separate, additional contractual arrangements for the non-exclusive distribution of the version of the work published in this journal (e.g., publishing in an institutional repository, on a personal website, publishing a translation, or as a chapter in a book), with an acknowledgement of its authorship and initial publication in this journal.
This license grants any user the right to:
Share – copy, download, print, or redistribute the material in any medium or format.
Adapt – remix, transform, and build upon the material for any purpose, even commercially.
According to the following terms:
Attribution – You must give appropriate credit (cite and reference), provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions – You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.