The impact of environmental indicators on waste management in cities
DOI:
https://doi.org/10.5007/2175-8077.2025.e103295Keywords:
Smart, healthy and sustainable cities, Energy efficiency, Waste managementAbstract
Context: This study explores the impact of environmental indicators on air quality, waste management, and water quality in cities.
Objective: evaluate how these indicators can support sustainable urban policies aimed at improving the environment and public health.
Methodology: The research uses a quantitative and descriptive approach, employing questionnaires for data collection via Google Forms, followed by analysis using descriptive statistics and Partial Least Squares Structural Equation Modeling. The study identifies four main environmental indicators and develops an initial model composed of 74 questions. This model is evaluated for its reliability, discriminant validity, and convergent validity. The Variance Inflation Factor (VIF) is used to analyze collinearity. The final model includes R² values and path coefficients, which have high explanatory power.
Contributions: the study contributes to the literature by offering a theoretical framework on sustainable cities. From an academic point of view, it presents an efficient methodology for creating a strategic map and a statistical model that can be used by municipal managers. In practice, the research provides policymakers with a validated model that can assist in the management and monitoring of urban waste, aiming to improve environmental quality and protect public health.
Results: the results suggest that, although environmental indicators significantly impact certain areas, further refinement of the model could help to better address the complex challenges of urban sustainability.
References
Ahad, M. A., Paiva, S., Tripathi, G., & Feroz, N. (2020). Enabling technologies and sustainable smart cities. Sustainable cities and society, 61, 102301.
Ahvenniemi, H., Huovila, A., Pinto-Seppä, I., & Airaksinen, M. (2017). What are the differences between sustainable and smart cities?. Cities, 60, 234-245.
Albino, V., Berardi, U., & Dangelico, R. M. (2015). Smart cities: Definitions, dimensions, performance, and initiatives. Journal of urban technology, 22(1), 3-21.
Al-Thani, H., Koç, M., & Isaifan, R. J. (2018). A review on the direct effect of particulate atmospheric pollution on materials and its mitigation for sustainable cities and societies. In Environmental Science and Pollution Research (Vol. 25, Issue 28, pp. 27839–27857).
Anthopoulos, L., Janssen, M., & Weerakkody, V. (2019). A Unified Smart City Model (USCM) for smart city conceptualization and benchmarking. Smart cities and smart spaces: Concepts, methodologies, tools, and applications, 247-264.
Arena, U. (2012). Process and technological aspects of municipal solid waste gasification. A review. Waste management, 32(4), 625-639.
Batista, L., Bourlakis, M., Liu, Y., Smart, P., & Sohal, A. (2018). Supply chain operations for a circular economy. Production Planning & Control, 29(6), 419-424.
Benites, A. J., & Simões, A. F. (2021). Assessing the urban sustainable development strategy: An application of a smart city services sustainability taxonomy. Ecological Indicators, 127. https://doi.org/10.1016/j.ecolind.2021.107734 .
Berardi, U. (2013). Sustainability assessment of urban communities through rating systems. Environment, development and sustainability, 15(6), 1573-1591.
Brdulak, A. (2020). Characteristics of Narrowband IoT (NB-IoT) technology that supports smart city management, based on the chosen use cases from the environment area. Journal of Decision Systems, 1-8.
Brilhante, O., & Klaas, J. (2018). Green city concept and a method to measure green city performance over time applied to fifty cities globally: Influence of GDP, population size and energy efficiency. Sustainability, 10(6), 2031.
Brito, V. T. F., Ferreira, F. A. F., Perez-Gladish, B., Govindan, K., & Meidute-Kavaliauskiene, I. (2019). Developing a green city assessment system using cognitive maps and the Choquet Integral. Journal of Cleaner Production, 218, 486-497. doi: https://doi.org/10.1016/j.jclepro.2019.01.060
Campeol, Giovanni; Carollo, Sandra; Masotto, Nicola. Development Theories and Infrastructural Planning: the Belluno Province. Book Green Energy and Technology, autors Bisello, A; Vettorato, D; Stephens, R; Elisei, P, p. 299-315, DOI: https://doi.org/10.1007/978- , 2017.
Cantuarias-Villessuzanne, C., Weigel, R., & Blain, J. (2021). Clustering of European Smart Cities to Understand the Cities’ Sustainability Strategies. Sustainability, 13(2), 513.
Carli, ., Albino, V., Dotoli, M., Mummolo, G., & Savino, M. (2015, July). A dashboard and decision support tool for the energy governance of smart cities. In 2015 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS) Proceedings (pp. 23-28). IEEE.
Castelli, M.; Gonçalves, I.; Trujillo, L.; Popoviˇc, A. An Evolutionary System for Ozone Concentration Forecasting. Inf. Syst. Front. 2017, 19, 1123–1132.
Chang, D. L., Sabatini-Marques, J., Da Costa, E. M., Selig, P. M., & Yigitcanlar, T. (2018). Knowledge-based, smart and sustainable cities: A provocation for a conceptual framework. Journal of Open Innovation: Technology, Market, and Complexity, 4(1), 5.
Chehri, A., & Mouftah, H. T. (2019). Autonomous vehicles in the sustainable cities, the beginning of a green adventure. Sustainable Cities and Society, 51, 101751. doi: https://doi.org/10.1016/j.scs.2019.101751
Chertow, M. R. (2007). “Uncovering” industrial symbiosis. Journal of industrial Ecology, 11(1), 11-30.
Chin, W. W. The partial least squares approach for structural equation modeling. In: Marcoulides, G.A. Modern methods for business research. London: Lawrence Erlbaum Associates, 1998. P. 295-336.
Cohen, J. Statistical Power Analysis for the Behavioral Sciences. 2 ed. Nova York: Psychology Press, 1988.
Crippa, M., Janssens-Maenhout, G., Dentener, F., Guizzardi, D., Sindelarova, K., Muntean, M., … Granier, C. (2016). Forty years of improvements in European air quality: Regional policy-industry interactions with global impacts. Atmospheric Chemistry and Physics, 16, 3825–3841.
El Ghorab, H. K., & Shalaby, H. A. (2016). Eco and Green cities as new approaches for planning and developing cities in Egypt. Alexandria Engineering Journal, 55(1), 495-503. doi: https://doi.org/10.1016/j.aej.2015.12.018
European Commission (2012). Communication from the commission. Smart cities and communities – European innovation partnership. Brussels. http://ec.europa.eu/energy/ technology/initiatives/doc/2012_4701_smart_cities_en.pdf (accessed 10.2.2016)
European Telecommunications Standards Institute (2017). ETSI TS 103 463 key performance indicators for sustainable digital multiservice cities. Technical specification V1.1.1 (2017-07). http://www.etsi.org/deliver/etsi_ts/103400_103499/103463/01.01.01_60/ts_103463v010101p.pdf , Accessed date: 15 June 2018.
Fenger, J. (1999). Urban air quality. Atmospheric Environment, 33(29), 4877–4900.
Fiore, N. V., Ferreira, C. C., Dzedzej, M., & Massi, K. G. (2019). Monitoring of a seedling planting restoration in a permanent preservation area of the southeast atlantic forest biome, Brazil. Forests, 10(9), 1–12. https://doi.org/10.3390/f10090768
Flynn, B.B., Kakibara, S.S., Schroeder, R.G., Bates, K.A. and Flynn, E.J. (1990), “Empirical research methods in operations management”, Journal of Operations Management, Vol. 9 No. 2, pp. 250-284
Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, v.18, n. 1, p. 39-50, 1981.
Francischini, A. S. N., & Francischini, P. G. (2017). Indicadores de desempenho.
Garau, C., & Pavan, V. M. (2018). Evaluating urban quality: Indicators and assessment tools for smart sustainable cities. Sustainability, 10(3), 575.
Giles-Corti, B., Lowe, M., & Arundel, J. (2019). Achieving the SDGs: Evaluating indicators to be used to benchmark and monitor progress towards creating healthy and sustainable cities. Health Policy. doi: https://doi.org/10.1016/j.healthpol.2019.03.001
Gurjar, B. R., Butler, T. M., Lawrence, M. G., & Lelieveld, J. (2008). Evaluation of emissions and air quality in megacities. Atmospheric Environment, 42(7), 1593–1606.
Hair Junior, J.F. et al. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 2. Ed. Los Angeles: SAGE, 2017.
Hák, T., Moldan, B., & Dahl, A. L. (Eds.). (2012). Sustainability indicators: a scientific assessment (Vol. 67). Island Press.
Holman, C., Harrison, R., & Querol, X. (2015). Review of the efficacy of low emission zones to improve urban air quality in European cities. Atmospheric Environment, 111, 161–169.
Hourneaux Jr, Gabriel, Gallardo-Vázquez (2018) Triple bottom line and sustainable performance measurement in industrial companies. Revista de Gestão. 25 (4)
International Standardization Organization (2018a). ISO 37120:2018 Sustainable cities and communities — Indicators for city services and quality of life (2nd ed.). (2018-07).
International Standardization Organization (2018b). ISO/DIS 37122 Sustainable cities and communities – Indicators for smart cities. (Published 2018-06-06).
International Telecommunication Union (2016a). Recommendation ITU-T Y.4901/L.1601key performance indicators related to the use of information and communication technology in smart sustainable cities.
International Telecommunication Union (2016b). Recommendation ITU-T Y.4902/L.1602 key performance indicators related to the sustainability impacts of information and communication technology in smart sustainable cities.
International Telecommunication Union (2016c). Recommendation ITU-T Y.4903/L.1603 key performance indicators for smart sustainable cities to assess the achievement of Sustainable Development Goals.
Jacobsen, R., Willeghems, G., Gellynck, X., & Buysse, J. (2018). Increasing the quantity of separated post-consumer plastics for reducing combustible household waste: The case of rigid plastics in Flanders. Waste management, 78, 708-716.
Jing, Z., & Wang, J. (2020). Sustainable development evaluation of the society–economy–environment in a resource-based city of China:A complex network approach. Journal of Cleaner Production, 121510. doi: https://doi.org/10.1016/j.jclepro.2020.121510
Joshi S., Saxena S., Godbole T., Shreya Developing Smart Cities: An Integrated Framework. Procedia Comput. Sci. 2016.
Laxmi, Vijaya; Dey, Jaydip; Kalawapudi, Komal; Kumar, Rakesh. An innovative approach of urban noise monitoring using cycle in
Nagpur, India. Environmental Science and Pollution Research. December 2019. DOI: https://doi.org/10.1007/s11356-019-06817-0 .
Li, W., & Yi, P. (2020). Assessment of city sustainability—Coupling coordinated development among economy, society and environment. Journal of Cleaner Production, 256, 120453. doi: https://doi.org/10.1016/j.jclepro.2020.120453
Liang Y.X., Cheng X.W., Zhu H., Shutes B., Yan B.X., Zhou Q.W., Yu X.F. Historical evaluation of mariculture in China during past 40 years and its impacts on eco-environment. Chin. Geogr. Sci. 2018
Lou, C. X., Shuai, J., Luo, L., & Li, H. (2020). Optimal transportation planning of classified domestic garbage based on map distance. Journal of environmental management, 254, 109781.
Lu S.R., Liu Y. Evaluation system for the sustainable development of urban transportation and ecological environment based on SVM. J. Intell. Fuzzy Syst. 2018.
Madhanraj Kalyanasundaram; Yogesh Sabde; Kristi Sidney Annerstedt; Surya Singh; Krushna Chandra Sahoo; Vivek Parashar; Manju Purohit; Ashish Pathak; Cecilia Stålsby Lundborg; Kamran Rousta; Kim Bolton; Salla Atkins; Vishal Diwan. Effects of improved information and volunteer support on segregation of solid waste at the household level in urban settings in Madhya Pradesh, India (I-MISS): protocol of a cluster randomized controlled trial. BMC Public Health (2021) https://doi.org/10.1186/s12889-021-10693-0
Mangalekar, S. B., Jadhav, A. S., and Raut P. D. (2012): Study of noise pollution in Kolhapur city, Maharashtra, India. Vol. 2 issue 1, 65-69.
Meerow, S. (2020). The politics of multifunctional green infrastructure planning in New York City. Cities, 100, 102621. doi: https://doi.org/10.1016/j.cities.2020.102621
Mingaleva, Z., Vukovic, N., Volkova, I., & Salimova, T. (2020). Waste management in green and smart cities: A case study of Russia. Sustainability, 12(1), 94.
Moonen, T., Clark, G., & Feenan, R. (2013). The business of cities 2013: What do 150 city indexes and benchmarking studies tell us about the urban world in 2013. Jones Lang LaSalle.
Morero, B., Montagna, A. F., Campanella, E. A., & Cafaro, D. C. (2020). Optimal process design for integrated municipal waste management with energy recovery in Argentina. Renewable Energy, 146, 2626-2636.
Mori, K., & Yamashita, T. (2015). Methodological framework of sustainability assessment in City Sustainability Index (CSI): A concept of constraint and aximization indicators. Habitat International, 45, 10-14.
Nižetić, S., Djilali, N., Papadopoulos, A., & Rodrigues, J. J. (2019). Smart technologies for promotion of energy efficiency, utilization of sustainable resources and waste management. Journal of cleaner production, 231, 565-591.
Organization, W. H. (1998). Glossary WHO Health Promotion Glossary.
Park, J., Lim, S. B., Hong, K. H., Pyeon, M. W., & Lin, J. Y. (2013). An application of emission monitoring system based on real-time traffic monitoring. International Journal of Information Processing and Management, 4(1), 51–57.
Park, J., Sarkis, J., & Wu, Z. (2010). Creating integrated business and environmental value within the context of China’s circular economy and ecological modernization. Journal of Cleaner Production, 18(15), 1494-1501.
Pascal, M., Corso, M., Chanel, O., Declercq, C., Badaloni, C., Cesaroni, G., … Aphekom group. (2013). Assessing the public health impacts of urban air pollution in 25. European cities: Results of the Aphekom project. The Science of the Total Environment, 449, 390–400.
Petern; Linda Lazaro; Yang, Yuzhen. Urban planning historical review of master plans and the way towards a sustainable city: Dar es Salaam, Tanzania, Frontiers of Architectura Research Volume 8, Issue 3, September 2019, Pages 359-377
Robinson, J., & Cole, R. J. (2015). Theoretical underpinnings of regenerative sustainability. Building Research & Information, 43(2), 133-143.
Ruan, F., Yan, L., & Wang, D. (2020). The complexity for the resource-based cities in China on creating sustainable development. Cities, 97, 102571. doi: https://doi.org/10.1016/j.cities.2019.102571
Santamouris M. On the energy impact of urban heat island and global warming on buildings. Energy Build. 2014.
Sarkar, A. N. (2013). Promoting eco-innovations to leverage sustainable development of eco-industry and green growth. European Journal of Sustainable Development, 2(1), 171-171.
Saunders, M.; Lewis, P.; Thornhill, A. Research methods for business students. 7 ed. Pearson Education, 2016.
Science for Environment Policy (2018). Indicators for sustainable cities. In-depth report 12. Produced for the European Commission DG Environment by the Science Communication Unit, UWE, Bristol.
Seuring, S., & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. Journal of cleaner production, 16(15), 1699-1710.
Sefair, J. A., Espinosa, M., Behrentz, E., & Medaglia, A. L. (2019). Optimization model for urban air quality policy design: A case study in Latin America. Computers, Environment and Urban Systems, 78, 101385. https://doi.org/10.1016/J.COMPENVURBSYS.2019.101385
Shah, J., Kothari, J., & Doshi, N. (2019). A survey of smart city infrastructure via case study on New York. Procedia Computer Science, 160, 702-705.
Sharifi, A., & Murayama, A. (2013). A critical review of seven selected neighborhood sustainability assessment tools. Environmental impact assessment review, 38, 73-87.
Shumal, M., Jahromi, A. R. T., Ferdowsi, A., Dehkordi, S. M. M. N., Moloudian, A., & Dehnavi, A. (2020). Comprehensive analysis of municipal solid waste rejected fractions as a source of Refused Derived Fuel in developing countries (case study of Isfahan-Iran): Environmental Impact and sustainable development. Renewable Energy, 146, 404-413.
Silva Melo, T., Mota, J. V. L., e Silveira, N. D. B., de Andrade, A. R. S., Peres, M. C. L., de Oliveira, M. L. T., & Delabie, J. H. C. (2020a). Combining ecological knowledge with brazilian urban zoning planning. Urbe, 12. https://doi.org/10.1590/2175-3369.012.E20190135
Silva Melo, T., Mota, J. V. L., e Silveira, N. D. B., de Andrade, A. R. S., Peres, M. C. L., de Oliveira, M. L. T., & Delabie, J. H. C. (2020b). Combining ecological knowledge with brazilian urban zoning planning. Urbe, 12, 2021. https://doi.org/10.1590/2175-3369.012.E20190135
Singh, P. K., & Ohri, A. (2020). Selecting Environmental Indicators for Sustainable Smart Cities Mission in India. Nature Environment and Pollution Technology, 19(1), 201-210.
Sokolov, A., Veselitskaya, N., Carabias, V., & Yildirim, O. (2019). Scenario-based identification of key factors for smart cities development policies. Technological Forecasting and Social Change, 148, 119729. doi: https://doi.org/10.1016/j.techfore.2019.119729
Steiniger, S., Wagemann, E., de la Barrera, F., Molinos-Senante, M., Villegas, R., de la Fuente, H., . . . Barton, J. R. (2020). Localising urban sustainability indicators: The CEDEUS indicator set, and lessons from an expert-driven process. Cities, 101. doi: https://doi.org/10.1016/j.cities.2020.102683
Stone, B., Jr. (2008). Urban sprawl and air quality in large US cities. Journal of Environmental Management, 86(4), 688–698.
Tanguay, G. A., Rajaonson, J., Lefebvre, J. F., & Lanoie, P. (2010). Measuring the sustainability of cities: An analysis of the use of local indicators. Ecological Indicators, 10(2), 407-418.
Tobias, M. S. G., Ramos, R. A. R., & Rodrigues, D. S. (2019). Use of waterway transport integrated to urban transportation systems in Amazonian cities: A vision of sustainable mobility. WIT Transactions on Ecology and the Environment, 238, 615–625. https://doi.org/10.2495/SC190531
Trindade, E. P., Hinnig, M. P. F., da Costa, E. M., Marques, J. S., Bastos, R. C., & Yigitcanlar, T. (2017). Sustainable development of smart cities: A systematic review of the literature. Journal of Open Innovation: Technology, Market, and Complexity, 3(3). https://doi.org/10.1186/s40852-017-0063-2
UN-Habitat, UNESCO, World Health Organisation, UNISDR, UN Women, UNEP, et al. (2016). SDG goal 11 monitoring framework. http://unhabitat.org/sdg-goal-11-monitoring-framework/ , Accessed date: 19 June 2018.
United Nations (2015). Habitat III issue papers, 21 – Smart cities. V. 2.0 (31 May 2015), issued in New York, USA, by UN task team on Habitat III, a task force of UN agencies and programs for the New Urban Agenda, prepared for Habitat III United Nations Conference on Housing and Sustainable Urban Development to take place in Quito, Ecuador, 17–20 October 2016.
Veról, A. P., Lourenço, I. B., Fraga, J. P. R., Battemarco, B. P., Merlo, M. L., de Magalhães, P. C., & Miguez, M. G. (2020). River restoration integrated with sustainable urban water management for resilient cities. Sustainability (Switzerland), 12(11). https://doi.org/10.3390/su12114677
Vijay, Ritesh; Kori, Chandan; Kumar, Manoj; Chakrabarti, Tapan; Gupta, Rajesh. Assessment of Traffic Noise on Highway Passing from Urban Agglomeration. Fluctuation and Noise Letters Vol. 13, No. 04, 1450031 (2014)
Vörösmarty, C. J., Rodríguez Osuna, V., Cak, A. D., Bhaduri, A., Bunn, S. E., Corsi, F., Gastelumendi, J., Green, P., Harrison, I., Lawford, R., Marcotullio, P. J., McClain, M., McDonald, R., McIntyre, P., Palmer, M., Robarts, R. D., Szöllösi-Nagy, A., Tessler, Z., & Uhlenbrook, S. (2018). Ecosystem-based water security and the Sustainable Development Goals (SDGs). Ecohydrology & Hydrobiology, 18(4), 317–333. https://doi.org/10.1016/J.ECOHYD.2018.07.004 .
Vos, P. E., Maiheu, B., Vankerkom, J., & Janssen, S. (2013). Improving local air quality in cities: to tree or not to tree? Environmental Pollution, 183, 113–122.
Zhang J., Li D. Study on water environment restoration and urban water system healthy circulation. Eng. Sci. 2011
Zhang S.F., Hu T.T., Li J.B., Cheng C., Song M.L., Xu B. The effects of energy price, technology, and disaster shocks on China’s Energy-Environment-Economy system. J. Clean. Prod. 2019
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Stephane Louise Boca Santa, Maria Gabriela Mendonça Peixoto, Gisele Mazon, Felipe Teixeira Dias, Cesar Duarte Souto-Maior, Thiago Coelho Soares, José Baltazar Osório Salgueirinho Andrade de Guerra

This work is licensed under a Creative Commons Attribution 4.0 International License.
The author must ensure:
- that there is complete consensus among all co-authors to approve the final version of the paper and its submission for publication.
- that their work is original, and if the work and/or words of others have been used, these have been duly acknowledged.
Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. RCA reserves the right to use software or any other methods of plagiarism detection.
All submissions received for evaluation in the RCA journal are screened for plagiarism and self-plagiarism. Plagiarism identified in manuscripts during the evaluation process will result in the submission being archived. In the event of plagiarism being identified in a manuscript published in the journal, the Editor-in-Chief will conduct a preliminary investigation and, if necessary, retract it.
Authors grant RCA exclusive rights of first publication, with the work simultaneously licensed under the Creative Commons (CC BY) 4.0 International License.

Authors are authorized to enter into separate, additional contractual arrangements for the non-exclusive distribution of the version of the work published in this journal (e.g., publishing in an institutional repository, on a personal website, publishing a translation, or as a chapter in a book), with an acknowledgement of its authorship and initial publication in this journal.
This license grants any user the right to:
Share – copy, download, print, or redistribute the material in any medium or format.
Adapt – remix, transform, and build upon the material for any purpose, even commercially.
According to the following terms:
Attribution – You must give appropriate credit (cite and reference), provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions – You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.