The "Greenhouse Effect" in the Classroom: a low cost experiment to demonstrate the absorption of infrared radiation by greenhouse gases like carbon dioxide

Authors

DOI:

https://doi.org/10.5007/2175-7941.2020v37n2p849

Abstract

Greenhouse effect and global warming are complex topics whose understanding requires mastery of various concepts and physical properties. The mechanism of the greenhouse effect is directly related to the role of greenhouse gases, like CO2, in absorbing infrared radiation emitted by the Earth and, thus, interfere in the Earth energy balance. In order to contribute to the discussion of the phenomenon of the greenhouse effect in the classroom, we assume that the use of experiments to demonstrate the absorption of infrared radiation by greenhouse gases presents strong educational potential. In this work we present a low cost and easy to perform classroom experiment to demonstrate the absorption of infrared radiation by the main non-condensable greenhouse gas of the Earth's atmosphere, carbon dioxide (CO2).

Author Biographies

Alexandre Luis Junges, Universidade Federal do Rio Grande do Sul, Campus Litoral Norte

Graduado em Licenciatura em Física, mestre em Filosofia e Doutor em Filosofia e em Ensino de Física.

Alexandre José Bühler, Instituto Federal do Rio Grande do Sul, Campus Farroupilha

Licenciado em Física, mestre e doutor em Engenharia Mecânica. Pós-Doc pelo ISAAC-SUPSI (Lugano, Suíça).

 

Neusa Teresinha Massoni, Instituto de Física, Universidade Federal do Rio Grande do Sul

Licenciada em Física, Mestra  e Doutora em Ciências pela Universidade Federal do Rio Grande do Sul (2010), área Ensino de Física. Atualmente é Professora Adjunto na Universidade Federal do Rio Grande do Sul, UFRGS, e docente permanente do Programa de Pós-Graduação em Ensino de Física do Instituto de Física da UFRGS.

Álisson Francisco Schneider Siebeneichler, Graduating Physics Student, Instituto de Física, Universidade Federal do Rio Grande do Sul

Licenciando em Física, bolsista de iniciação científica tendo atuado nos programas PIBID e residência pedagógica do Instituto de Física da UFRGS.

References

ALBE, V.; GOMBERT, M. Students’ communication, argumentation and knowledge in a citizens’ conference on global warming. Cultural Studies of Science Education, v. 7, n. 3, p. 659-681, 2018.

ARSLAN, H.; CIGDEMOGLU, C.; MOSELEY, C. A three-tier diagnostic test to assess pre-service teachers' misconceptions about global warming, greenhouse effect, ozone layer depletion, and acid rain. International Journal of Science Education, v. 34, n. 11, p. 1667-1686, 2012.

ATKINS, P. Físico-química. Rio de Janeiro: LTC, 2012. v. 2.

BARRY, R; CHORLEY, R. Atmosfera, tempo e clima. Porto Alegre: Bookman, 2013.

BESSON, U.; DE AMBROSIS, A.; MASCHERETTI, P. Studying the physical basis of global warming: thermal effects of the interaction between radiation and matter and greenhouse effect. European Journal of Physics, v. 31, n. 2, p. 375-388, 2010.

BERTÒ, M.; DELLA VOLPE; GRATTON, L. ‘Clima change in a shoebox’: a critical review. European Journal of Physics, v. 35, n. 2, p. 1-12, 2014.

BORGES, A. T. Novos rumos para o laboratório escolar de ciências. Caderno Brasileiro de Ensino de Física, v. 19, n. 3, p. 291-313, 2002.

BRASIL. Lei nº 9.795/1999. Dispõe sobre Educação Ambiental e institui a Política Nacional de Educação Ambiental, e dá outras providências, 1999.

BUXTON, G. The physics behind a simple demonstration of the greenhouse effect. Physics Education, v. 49, n. 2, p. 171-175, 2014.

Catalysis-ed. Infra-red Spectra for ldpe and hdpe. Disponível em:

<http://www.catalysis-ed.org.uk/polyethene/poly_3_popup.htm>. Acesso em: 05 jun. 2019.

CHRISTOPHERSON, R. Geossistemas: uma introdução à geografia física. Porto Alegre: Bookman, 2012.

Digi-key Eletronics. Disponível em: <https://www.digikey.com/en/datasheets/melexis-technologies-nv/melexis-technologies-nv-mlx90614-datasheet-melexis>. Acesso em: 30 abr. 2019.

FLEMING, J. Historical Perspectives on Climate Change. New York: Oxford University Press, 1998.

GOODY, R.; WALKER. J. Atmosferas planetárias. São Paulo: Edgar Blucher, 1996.

IPCC. Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York: Cambridge University Press, 2013. Acesso em: 10 jun. 2019. Disponível em: https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_SPM_FINAL.pdf>.

JUNGES, A. L.; MASSONI, N. T. O consenso científico sobre aquecimento global antropogênico: considerações históricas e epistemológicas e reflexões para o ensino dessa temática. Revista Brasileira de Pesquisa em Educação em Ciências, v. 18, n. 2, p. 455-491, 2018.

KANEKO, F.; MONJUSHIRO, H. Photoacoustic experimental system to confirm infrared absorption due to greenhouse gases. Journal of Chemical Education, v. 87, n. 2, p. 202-204, 2010.

LACIS, A.; SCHMIDT, G.; RIND, D.; RUEDY, R. Atmospheric CO2: principal control knob governing earth’s temperature. Science, v. 330, n. 6002, p. 356-359, 2010.

LE TREUT, H. et al. Historical Overview of Climate Change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. Cambridge: Cambridge University Press. Disponível em: <https://www.ipcc.ch/site/assets/uploads/2018/03/ar4-wg1-chapter1.pdf>. Acesso em: 10 jun. 2019.

Molecular vibrations: infrared spectroscopy. University of Liverpool, 2019. Disponível em: <http://www.chemtube3d.com/vibrationsCO2.htm>. Acesso em: 30 abr. 2019.

NIBERT, K.; GROPENGIESSER, H. Understanding the greenhouse effect by embodiment. Analysing and using students' and scientists' conceptual resources. International Journal of Science Education, v. 36, n. 2, p. 277-303, 2014.

PIERREHUMBERT, R. Warming the world. Greenhouse effect: Fourier’s concept of planetary energy balance is still relevant today. Nature, v. 432, p. 677, 2004.

RATINEN, I. Primary student-teachers' conceptual understanding of the greenhouse effect: a mixed method study. International Journal of Science Education, v. 35, n. 6, p. 929-955, 2013.

SMITH, B. Infrared spectral interpretation: a systematic approach. New York: CRC Press, 1999.

TASQUIER, G.; LEVRINE, O.; DILLON, J. Exploring Students' Epistemological Knowledge of Models and Modelling in Science: Results from a Teaching/Learning Experience on Climate Change. International Journal of Science Education, v. 38, n. 4, p. 539-563, 2016.

WAGONER, P.; LIU, C.; TOBIN, R. Climate change in a shoebox: right result, wrong physics. American Journal of Physics, v. 78, n. 5, p. 536-540, 2010.

WEART, S. Discovery of Global Warming. 2008. Disponível em:

<https://history.aip.org/climate/index.htm>. Acesso em: 05 jun. 2019.

Published

2020-08-12

How to Cite

Junges, A. L., Bühler, A. J., Massoni, N. T., & Schneider Siebeneichler, Álisson F. (2020). The "Greenhouse Effect" in the Classroom: a low cost experiment to demonstrate the absorption of infrared radiation by greenhouse gases like carbon dioxide. Caderno Brasileiro De Ensino De Física, 37(2), 849–864. https://doi.org/10.5007/2175-7941.2020v37n2p849

Issue

Section

Atividades experimentais no ensino de Física

Most read articles by the same author(s)

1 2 > >>